sklearn光速入门实践[1]——实现一个简单的SVM分类器

2024-08-26 14:32

本文主要是介绍sklearn光速入门实践[1]——实现一个简单的SVM分类器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python的sklearn库封装了许多常用的机器学习算法,而且入门简单,调用方便。下面我们用sklearn库和简单的几个点作为数据集,来实现一个简单的SVM分类器。

首先,准备好数据。我们把(2,0),(0,2),(0,0)这三个点当作类别1;(3,0),(0,3),(3,3)这三个点当作类别2,训练好SVM分类器之后,我们预测(-1,-1),(4,4)这两个点所属的类别。示意图如下:
在这里插入图片描述

1、组装数据集。

在组装数据集的时候,这里最重要的就是要注意数据的组合格式。data中每行元素作为一个样本,各列分别是该样本的各个属性,比如上边的几个点,封装成如下格式:x = np.array([[2,0],[0,2],[0,0],[3,0],[0,3],[3,3]]) 。label排成一行,与data中的数据相对应即可:y = np.array([1,1,1,2,2,2])

【注】:这里利用Pandas进行封装也可以。

import pandas as pd
data = np.array([[2,0,1],[0,2,1],[0,0,1],[3,0,2],[0,3,2],[3,3,2]])
data = pd.DataFrame(data,column = [0,1,2])
x = data[[0,1]]
y = data[2]
2、设置SVM分类器的属性

model = SVC(kernel='linear', probability=True)
当probability=False时,没办法调用 model.predict_proba()函数
可选的属性列表:

  • 待完善1
  • 待完善2
3、执行SVM分类器

model.fit(x,y)

4、预测

pre = model.predict_proba(C)

最后,附完整代码如下:

from sklearn.svm import SVC
import numpy as np
x = np.array([[2,0],[0,2],[0,0],[3,0],[0,3],[3,3]])
y = np.array([1,1,1,2,2,2])
model = SVC(kernel='linear', probability=True)#probability=False时,没办法调用 model.predict_proba()函数
model.fit(data,label)
C = [[-1,-1],[4,4]]
pre = model.predict_proba(C)
print(pre)
pre1 = model.predict(C)
print(pre1)

结果如下:

[[0.62507004 0.37492996][0.33332917 0.66667083]]
[1 2]

可以看到,预测(-1,-1)的标签是1的概率为0.62507004,2的概率为0.37492996。最终预测为类别1。
预测(4,4)的标签是1的概率为0.33332917,2的概率为0.66667083。最终预测为类别2。这个结果与我们在图中直观看到的结果相符。

官方文档地址:sklearn.svm.SVC

这篇关于sklearn光速入门实践[1]——实现一个简单的SVM分类器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108827

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配