地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤

2024-08-26 12:04

本文主要是介绍地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

*文章来自美国Minitab官网

当 2020 年新冠疫情来袭时,公共交通组织重新分配了资源。许多地方削减了地铁时刻表,并专注于轨道建设、基础设施和安全培训。

随着员工开始以混合办公或全职的方式返回办公室,许多公共交通组织未能充分调整时刻表。这导致了安全问题、不卫生的状况、火车过度拥挤以及乘客的失望。

作为一名经常往返于芝加哥市中心办公室的通勤者,我在过去几年里注意到了这些变化,并认为我们应该进行调查。在 Minitab Workspace 和 Minitab 统计软件的帮助下,这些问题可以得到解决。以下是方法。

一个用例:什么让乘客感到困扰?

在一个假设的场景中,一个中西部的主要交通管理部门进行了一次客户调查,以衡量客户满意度并确定需要改进的领域。令他们惊讶的是,大多数客户并不满意。有几个原因被注意到。该团队使用 Minitab Workspace 来可视化客户最常见的投诉:

他们注意到最常见的投诉是 “高峰时段拥堵”。在早高峰时段(周一至周五上午 5 点至 10 点)尤其如此。下一步是使用 Minitab 统计软件来可视化这些数据。

数据可视化:乘客何时使用公共交通?

该团队花了几周时间收集数据,以确定每趟地铁大约有多少人乘坐。一旦他们收集了所有相关数据,他们在 Minitab 中创建了两种不同的可视化图表,一个箱线图和一个散点图。以下是他们的数据样子:

他们的数据显示,周二、周三和周四的乘客量最大,其中周三上午 8:20 和 8:40 的地铁使用最为频繁。

我们如何解决这个问题呢?

该公司的领导随后按日划分数据,并使用回归分析来更好地理解每天的数据趋势。以下是 Minitab 为周三生成的拟合线图:

在这种情况下,领导可以使用这个方程来预测周三一天中任何时间的乘客量,甚至在非高峰时段。

也许更重要的是,团队希望看到乘客量模式中明显的统计变化在哪里。为此,他们使用了 Minitab 的预测分析模块中的 MARS 回归,将数据分成可以观察到明显模式变化的段。以下是他们周三的数据:

这个单预测变量的偏依赖图增加了有趣的背景信息;虽然乘客量最大的时间是在上午 8:20 到 9:00 之间,但乘客量模式的最大变化发生在上午 7:40。并且,使用 MARS,团队只需点击 “预测” 按钮即可获得每周每天的未来预测。

那么,有什么应用呢?

如果没有这些数据,大多数交通组织会主张在高峰时段增加一列火车,可能在上午 8:30 或 8:40 左右。但是,从更精细的层面来看,交通系统通过在上午 8:00 左右而不是在高峰时段稍晚的时候增加更多火车,将获得更好的减少过度拥挤的效果。

希望有了这些数据的支持,交通系统不需要两次重新制定时刻表,并且他们可以更明智地使用有限的资源。这个步骤可以在乘客量超过允许阈值的所有日子里重复进行,以找到增加一列额外火车将产生最大影响的时间。

团队还推测,首先解决这个问题可能会自然地解决一些其他问题,如车站过度拥挤、座位不足和清洁问题。

最终,结果将是让乘客变得快乐。这是一件好事 —— 更快乐的乘客不太可能寻找其他方式去上班、上学或休闲。

以数据为驱动解决公共交通问题

公共交通至关重要,原因有很多,包括其对环境的积极影响、为乘客带来的经济效益、减少所有人的交通拥堵以及促进社会公平。当这些系统遇到问题时,不仅会对乘客产生负面影响,还会对依赖可靠交通的整个城市生态系统产生负面影响。

Minitab 可以通过提供强大的数据分析工具来帮助公共交通系统更高效、可靠和安全地运行,以识别和纠正问题或主动解决问题。通过利用 Minitab 的功能,交通管理部门可以优化路线、改进维护计划并提高整体服务质量,确保为所有乘客提供更顺畅、更可靠的体验。

这篇关于地铁通勤,拥挤之痛:你有同感吗?如何通过数据优化公共交通拥挤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108504

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元