回归分析系列21— 非线性回归模型进阶

2024-08-26 11:04

本文主要是介绍回归分析系列21— 非线性回归模型进阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

20 非线性回归模型进阶

20.1 简介

非线性回归模型是一类用于处理非线性关系的数据建模方法。在很多实际应用中,变量之间的关系并非线性的,此时线性回归模型可能不适用。非线性回归模型可以通过引入非线性函数或更复杂的模型来更好地拟合数据。

20.2 非线性函数的选择

非线性回归的一个关键步骤是选择适当的非线性函数。例如,常见的非线性函数包括指数函数、对数函数和多项式函数。我们可以通过这些函数来捕捉变量之间的非线性关系。

在Python中,我们可以使用scikit-learnPolynomialFeatures来实现多项式回归。

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
import numpy as np
import matplotlib.pyplot as plt# 生成模拟数据
np.random.seed(42)
X = np.linspace(0, 10, 100).reshape(-1, 1)
y = np.sin(X).ravel() + np.random.randn(100) * 0.1# 使用多项式回归建模
degree = 3
polyreg = make_pipeline(PolynomialFeatures(degree), LinearRegression())
polyreg.fit(X, y)# 预测
y_pred = polyreg.predict(X)# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X, y_pred, color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title(f'Polynomial Regression (degree={degree})')
plt.show()

20.3 非线性回归的优化方法

在非线性回归中,通常需要优化器来最小化模型的误差。scikit-learn中的LinearRegression可以通过扩展输入特征来实现多项式回归。此外,如果模型更复杂,可以考虑使用更强大的优化算法,如梯度下降或牛顿法。

from sklearn.linear_model import Ridge# 构建带有正则化项的多项式回归模型
degree = 3
polyreg_ridge = make_pipeline(PolynomialFeatures(degree), Ridge(alpha=0.5))
polyreg_ridge.fit(X, y)# 预测
y_pred_ridge = polyreg_ridge.predict(X)# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X, y_pred_ridge, color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title(f'Polynomial Ridge Regression (degree={degree}, alpha=0.5)')
plt.show()

20.4 核方法

核方法是一种将输入数据映射到高维空间的技术,从而使得在高维空间中的非线性问题在低维空间中变得线性。支持向量机(SVM)和核岭回归是常见的核方法。

from sklearn.svm import SVR# 使用支持向量回归 (SVR) 进行非线性回归
svr = SVR(kernel='rbf', C=1.0, epsilon=0.1)
svr.fit(X, y)# 预测
y_pred_svr = svr.predict(X)# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X, y_pred_svr, color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Support Vector Regression (SVR) with RBF Kernel')
plt.show()

20.5 应用案例:非线性经济模型

非线性回归模型广泛应用于经济数据分析中。例如,在建模消费者行为或市场需求时,变量之间的关系通常是非线性的。通过选择适当的非线性函数,可以更准确地描述这些复杂关系。

 

这篇关于回归分析系列21— 非线性回归模型进阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108382

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支