Python相关系数导图

2024-08-26 09:52
文章标签 python 导图 相关系数

本文主要是介绍Python相关系数导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 量化变量和特征关联
  2. 绘图对比皮尔逊相关系数、斯皮尔曼氏秩和肯德尔秩
  3. 汽车性价比相关性矩阵热图
  4. 大流行病与资产波动
  5. 城镇化模型预测交通量
  6. 宝可梦类别特征非线性依赖性捕捉
  7. 向量加权皮尔逊相关系数
  8. 量化图像相似性
    在这里插入图片描述

Python皮尔逊-斯皮尔曼-肯德尔

皮尔逊相关系数

在统计学中,皮尔逊相关系数 是一种用于测量两组数据之间线性相关性的相关系数。它是两个变量的协方差与其标准差乘积的比率;因此,它本质上是协方差的标准化测量,其结果始终介于 -1 和 1 之间。与协方差本身一样,该测量只能反映变量的线性相关性,而忽略了许多其他类型的关系或相关性。举一个简单的例子,人们会期望来自小学的一组儿童的年龄和身高的皮尔逊相关系数明显大于 0,但小于 1(因为 1 表示不切实际的完美相关性)。

皮尔逊相关系数是两个变量的协方差除以其标准差的乘积。定义的形式涉及“乘积矩”,即均值调整后的随机变量乘积的均值(关于原点的一阶矩),因此名称中带有修饰词“乘积矩”。

皮尔逊相关系数应用于样本时,通常用 r x y r_{x y} rxy 表示,可称为样本相关系数或样本皮尔逊相关系数。通过将基于样本的协方差和方差的估计值代入上述公式,我们可以得到 r x y r_{x y} rxy 的公式。给定由 n n n 对组成的配对数据 { ( x 1 , y 1 ) , … , ( x n , y n ) } \left\{\left(x_1, y_1\right), \ldots,\left(x_n, y_n\right)\right\} {(x1,y1),,(xn,yn)},定义 r x y r_{x y} rxy
r x y = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 r_{x y}=\frac{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_{i=1}^n\left(x_i-\bar{x}\right)^2} \sqrt{\sum_{i=1}^n\left(y_i-\bar{y}\right)^2}} rxy=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)
要计算 Pearson’s R 相关系数,使用 scipy.stats 库中的 pearsonr 函数。

import numpy as np
from scipy.stats import pearsonrx = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])correlation_coefficient, _ = pearsonr(x, y)
print("Pearson's Correlation Coefficient:", correlation_coefficient)

这里的输出显示了完美的正相关性,其中当一个变量增加 1 时,另一个变量也增加相同的量。

Pearson's Correlation Coefficient: 1.0

绘图

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
import seaborn as snsnp.random.seed(0)
x_neg = np.linspace(0, 10, 50)
y_neg = -2 * x_neg + 10 + np.random.normal(0, 2, 50)x_pos = np.linspace(0, 10, 50)
y_pos = 2 * x_pos + np.random.normal(0, 2, 50)x_no_corr = np.linspace(0, 10, 50)
y_no_corr = np.random.normal(0, 2, 50)corr_coeff_neg, _ = pearsonr(x_neg, y_neg)
corr_coeff_pos, _ = pearsonr(x_pos, y_pos)
corr_coeff_no_corr, _ = pearsonr(x_no_corr, y_no_corr)fig, axes = plt.subplots(1, 3, figsize=(15, 5))sns.regplot(x=x_neg, y=y_neg, ax=axes[0], color='red', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[0].set_xlabel('X')
axes[0].set_ylabel('Y')
axes[0].set_title(f"Negative Correlation (r = {corr_coeff_neg:.2f})")sns.regplot(x=x_pos, y=y_pos, ax=axes[1], color='green', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[1].set_xlabel('X')
axes[1].set_ylabel('Y')
axes[1].set_title(f"Positive Correlation (r = {corr_coeff_pos:.2f})")sns.regplot(x=x_no_corr, y=y_no_corr, ax=axes[2], color='blue', scatter_kws={'s': 15}, line_kws={'color': 'blue'}, ci=95)
axes[2].set_xlabel('X')
axes[2].set_ylabel('Y')
axes[2].set_title(f"No Correlation (r = {corr_coeff_no_corr:.2f})")plt.tight_layout()
plt.show()

斯皮尔曼秩相关系数

在统计学中,斯皮尔曼等级相关系数或斯皮尔曼 ρ \rho ρ,通常用希腊字母 ρ \rho ρ (rho) 或 r s r_s rs 表示,是一个排名相关性的非参数度量(两个变量秩之间的统计依赖性)。它评估使用单调函数描述两个变量之间的关系的程度。

斯皮尔曼相关系数定义为秩变量之间的皮尔逊相关系数。对于大小为 n n n 的样本, n n n 对原始分数 ( X i , Y i ) \left(X_i, Y_i\right) (Xi,Yi) 转换为秩 $R \left[X_i\right], R \left[Y_i\right] $ ,于是 r s r_s rs 计算为
r s = ρ [ R [ X ] , R [ Y ] ] = cov ⁡ [ R [ X ] , R [ Y ] ] σ R [ X ] σ R [ Y ] r_s=\rho[ R [X], R [Y]]=\frac{\operatorname{cov}[ R [X], R [Y]]}{\sigma_{ R [X]} \sigma_{ R [Y]}} rs=ρ[R[X],R[Y]]=σR[X]σR[Y]cov[R[X],R[Y]]

要计算斯皮尔曼的秩相关性,使用 scipy.stats 库中的 Spearmanr 函数。

from scipy.stats import spearmanrx = [10, 20, 30, 40, 50]
y = [5, 15, 25, 35, 45]rho, p_value = spearmanr(x, y)print(f"Spearman's Rank Correlation Coefficient: {rho}")
print(f"P-value: {p_value}")

解释 ρ \rho ρ 结果:

  • ρ \rho ρ:当一个变量增加时,另一个变量也会增加,
  • ρ \rho ρ:当一个变量增加时,另一个变量往往会减少。
  • ρ \rho ρ=0:没有单调关系。

肯德尔秩相关系数

在统计学中,肯德尔秩相关系数通常称为肯德尔 τ 系数(以希腊字母 τ 命名,即 tau),是一种用于测量两个测量量之间的序数关联的统计数据。τ 检验是一种基于 τ 系数的统计依赖性非参数假设检验。它是秩相关的度量:按每个量对数据进行排序时,数据排序的相似性。

要计算肯德尔秩相关系数,使用 scipy.stats 库中的 kendalltau 函数。

import numpy as np
from scipy.stats import kendalltaux = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 1, 5, 4])tau, p_value = kendalltau(x, y)print(f"Kendall's Tau (τ): {tau:.2f}")
print(f"P-value: {p_value:.4f}")

👉更新:亚图跨际

这篇关于Python相关系数导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1108225

相关文章

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典