姿态识别 python 效果好,提供多种精准模型

2024-08-26 09:28

本文主要是介绍姿态识别 python 效果好,提供多种精准模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

该项目是一款基于Python的AI健身教练系统,它利用先进的姿态识别技术来帮助用户进行正确的运动姿势训练。该系统可以识别并纠正用户在做特定运动时的姿势,比如深蹲、仰卧起坐、步行等。

技术栈:
  • 编程语言:Python
  • 深度学习框架:可以使用TensorFlow、PyTorch等
  • 姿态识别模型:项目提供了多种高精度的模型,包括但不限于基于卷积神经网络(CNN)的模型、基于Transformer架构的模型等。
功能特性:
  1. 姿态检测与跟踪:能够实时检测并跟踪用户的身体关键点位置。
  2. 实时反馈:根据检测到的姿势,提供实时的反馈和指导,帮助用户改正姿势。
  3. 多种运动支持:支持多种不同的运动类型,例如深蹲、仰卧起坐、步行等。
  4. 多模型选择:用户可以根据自己的需求选择不同的姿态识别模型,以获得更好的效果。
  5. 视频录制与回放:允许用户录制训练过程并进行回放,以便更好地自我检查姿势是否正确。
  6. 个性化训练建议:根据用户的训练情况,提供个性化的训练建议和改进方案。

使用案例:
  • 健身爱好者:帮助健身爱好者在家里进行有效的锻炼,确保动作标准。
  • 运动员:辅助运动员进行专业的训练,避免受伤。
  • 康复患者:对于需要进行物理治疗的患者来说,可以帮助他们按照正确的姿势进行恢复训练。
演示示例:
  • 深蹲:项目中提供了一个深蹲姿态识别的演示gif,可以展示系统如何识别并跟踪用户深蹲的动作。
  • 步行:同样提供了一个步行姿态识别的演示gif,展示了系统如何跟踪用户行走时的步态。

数据与模型:
  • 数据集:可能使用了公开的数据集或者自行收集的数据集来进行模型训练。
  • 模型:项目中包含以下几种模型之一或多个:
    • 基于CNN的模型
    • 基于Transformer架构的模型
    • 其他自定义的深度学习模型

安装与使用:
  • 安装:安装必要的Python库和依赖项。
  • 配置:设置摄像头或视频输入源。
  • 运行:启动应用程序并开始识别用户的姿态。
未来发展方向:
  • 多模态融合:结合音频、视频等多种数据源来提升识别的准确性。
  • 增强现实集成:将姿态识别结果与增强现实技术相结合,提供更直观的反馈。
  • 云服务部署:将姿态识别服务部署到云端,让用户可以通过任何设备访问。

首先,我们需要一些基础的库和框架:

  • cv2 (OpenCV):用于视频捕获和图像处理。
  • numpy:进行数学运算。
  • tensorflow 或 torch:用于加载和使用预先训练好的模型。

以下是一个简化版的姿态识别系统的关键代码片段。此示例假设您已经有了一个训练好的模型,可以加载并用于姿态识别。

1import cv2
2import numpy as np
3import tensorflow as tf  # 或者使用 import torch 如果您的模型是基于 PyTorch 的
4
5# 加载预训练的模型
6def load_model(model_path):
7    # 根据使用的框架加载模型
8    if model_path.endswith('.h5') or model_path.endswith('.pb'):
9        # TensorFlow 模型
10        model = tf.keras.models.load_model(model_path)
11    elif model_path.endswith('.pt'):
12        # PyTorch 模型
13        model = torch.load(model_path)
14    else:
15        raise ValueError("Unsupported model file format")
16    return model
17
18# 检测和绘制关键点
19def draw_keypoints(image, keypoints):
20    for keypoint in keypoints:
21        x, y = keypoint[:2]
22        cv2.circle(image, (int(x), int(y)), 5, (0, 0, 255), -1)
23
24# 主函数
25def main():
26    # 加载模型
27    model = load_model('path/to/model.h5')
28
29    # 初始化摄像头
30    cap = cv2.VideoCapture(0)  # 使用默认摄像头
31
32    while True:
33        ret, frame = cap.read()
34
35        if not ret:
36            break
37
38        # 预处理图像
39        img = cv2.resize(frame, (224, 224))  # 根据模型的要求调整尺寸
40        img = img.astype(np.float32) / 255.0  # 归一化
41        img = np.expand_dims(img, axis=0)  # 添加批次维度
42
43        # 使用模型预测
44        predictions = model.predict(img)
45
46        # 解析预测结果
47        keypoints = predictions[0]
48
49        # 绘制关键点
50        draw_keypoints(frame, keypoints)
51
52        # 显示结果
53        cv2.imshow('Pose Detection', frame)
54
55        # 按'q'退出循环
56        if cv2.waitKey(1) & 0xFF == ord('q'):
57            break
58
59    # 清理
60    cap.release()
61    cv2.destroyAllWindows()
62
63if __name__ == '__main__':
64    main()

说明

  1. 加载模型 (load_model 函数):此函数根据模型文件的扩展名
  2. 来决定加载哪个框架的模型。这里假设模型文件是.h5.pb格式(TensorFlow)或.pt格式(PyTorch)。
  3. 检测和绘制关键点 (draw_keypoints 函数):此函数接收一张图像和一组关键点坐标,并在图像上绘制这些关键点。
  4. 主函数 (main 函数):
    • 初始化摄像头。
    • 读取每一帧图像,对其进行预处理,然后传递给模型进行预测。
    • 解析模型的输出,获取关键点坐标。
    • 在原始图像上绘制这些关键点。
    • 显示带有关键点的图像。

这篇关于姿态识别 python 效果好,提供多种精准模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108174

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: