大数据技术之Flume 拓扑结构(4)

2024-08-26 07:44

本文主要是介绍大数据技术之Flume 拓扑结构(4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Flume 拓扑结构

 简单串联 (Simple Serial)

 复制和多路复用 (Replication and Multiplexing)

 负载均衡和故障转移 (Load Balancing and Failover)

 聚合 (Aggregation)

示例配置


Flume 拓扑结构

Flume 支持多种拓扑结构来满足不同的数据收集和传输需求。以下是 Flume 中常见的几种拓扑结构:

 简单串联 (Simple Serial)

  • 描述: 这种模式是将多个 Flume Agent 顺序连接起来,从最初的 Source 开始到最终的 Sink 传送至目的存储系统。
  • 特点:
    • 适用于简单的数据流管道。
    • 不建议桥接过多的 Flume Agent,因为数量过多可能会影响传输速率。
    • 一旦传输过程中某个节点 Flume Agent 宕机,可能会影响整个传输系统。

 复制和多路复用 (Replication and Multiplexing)

 

  • 描述: Flume 支持将事件流向一个或多个目的地。这种模式可以将相同数据复制到多个 Channel 中,或者将不同数据分发到不同的 Channel 中,Sink 可以选择传送到不同的目的地。
  • 特点:
    • 复制: 将同一个事件复制并发送到多个 Channel 或 Sink。
    • 多路复用: 根据预定义的规则,将不同的事件发送到不同的 Channel 或 Sink。
    • 这种结构增加了数据的灵活性和可扩展性。 

 负载均衡和故障转移 (Load Balancing and Failover)

 

  • 描述: Flume 支持使用将多个 Sink 逻辑上分到一个 Sink 组,Sink 组配合不同的 SinkProcessor 可以实现负载均衡和错误恢复的功能。
  • 特点:
    • 负载均衡: 在多个 Sink 之间分配负载,提高系统的吞吐量。
    • 故障转移: 当主 Sink 失败时,自动切换到备选 Sink。 

 聚合 (Aggregation)

 

  • 描述: 这种模式是我们最常见的,也非常实用,尤其是在日常 Web 应用中。Web 应用通常分布在上百个服务器,甚至上千个、上万个服务器。产生的日志,处理起来非常麻烦。使用 Flume 的这种组合方式能很好地解决这一问题。
  • 特点:
    • 每台服务器部署一个 Flume Agent 采集日志。
    • 将这些日志传送到一个集中收集日志的 Flume Agent。
    • 由该集中 Flume Agent 上传到 HDFS、Hive、HBase 等存储系统进行日志分析。
    • 适用于需要从多个数据源收集数据的情况。
    • 提高了数据收集的效率和可靠性。

示例配置

这里提供一个简单的串联拓扑结构的配置示例:

# 定义一个名为 a1 的 Agent
a1.sources = <Source1> <Source2>
a1.channels = <Sink1> <Sink2>
a1.sinks = <Channel1> <Channel2># 将 Source、Channel 和 Sink 配置到一起
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100a1.sinks.k1.type = logger# 连接 Source、Channel 和 Sink
a1.sources.r1.channels = <Channel1>
a1.sinks.k1.channel = <Channel2>

在这个例子中,我们定义了一个 Agent (a1),它有一个 Source (r1)、一个 Channel (c1) 和一个 Sink (k1)。Source (r1) 用来接收网络数据,Channel (c1) 用作中间存储,而 Sink (k1) 用于日志输出。

这篇关于大数据技术之Flume 拓扑结构(4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107966

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock