二分查找算法:朴素二分+左右边界二分力扣实战应用

2024-08-26 05:44

本文主要是介绍二分查找算法:朴素二分+左右边界二分力扣实战应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:

1、二分查找算法简介

2、算法原理及时间复杂度分析

2.1 朴素二分算法

3.2 查找左右边界的二分算法

3.2.1 查找左边界

3.2.2 查找右边界

3.3 时间复杂度分析

3、二分查找算法模版

3.1 朴素二分模版

3.2 查找左右边界的二分模版

4、算法应用【leetcode】

4.1 题一:搜素插入位置

4.1.1 思路分析

4.1.2 算法代码

4.2 题二:x的平方根

4.2.1 思路分析

4.2.2 算法代码

4.3 题三:山峰数组的峰顶索引

4.3.1 思路分析

4.3.2 算法代码

4.4 题四:寻找峰值

4.4.1 思路分析

4.4.2 算法代码

4.5 题五:寻找旋转排序数组中的最小值

4.5.1 思路分析

4.5.2 算法代码

4.6 题六:点名 (原:剑指Offer:0~n-1 中缺失的数字 )

 4.6.1 思路分析

4.6.2 算法代码


1、二分查找算法简介

算法,是一种思想,并不是固定的模式,我们可以使用一种算法思想解决多种问题。

二分查找算法,是一个细节最多、最恶心、最容易写出死循环的一个算法,但是当我们熟练掌握后它就可以变成一个最简单的算法,利用它,仅仅使用十几行代码就可以解决掉一个难题,所以在算法学习的路途中,二分查找算法的学习是极为重要且必不可少的。

二分法查找算法的使用条件:数据具有“二段性”。(并非数据有序)

注意:并不是只有数据有序的情况下才可以使用二分查找算法,只要数据具有二段性,即使数据乱序,也可以使用二分查找算法!!!

2、算法原理及时间复杂度分析

这里通过例题为大家讲解算法原理。

2.1 朴素二分算法

. - 力扣(LeetCode)

使用二分查找算法的关键点是:数据具有“二段性”。

因为数组为升序排列,所以target左边的数据均<target,target右边的数据均>target,故可将数据分为“二段”,具有二段性,可以使用二分查找算法。

定义left和right指针分别指向数组0下标处和nums.length-1处,以及定义他们的中间位置mid,将nums[mid]和target比较,

  1. nums[mid] < target ---> left = mid+1;
  2. nums[mid] > target ---> right = mid-1;
  3. nums[mid] == target ---> 返回结果;

这样一次比较即可过滤掉一半数据,大大提高了查找效率。、

注意:

  • 循环条件为:left <= right
  • 为防止数据溢出,更新mid的方式为:mid = left + (right - left) / 2;或者mid = left + (right - left + 1) / 2;

class Solution {public int search(int[] nums, int target) {int left = 0;int right = nums.length-1;while (left <= right) {int mid = left+(right-left)/2;if(nums[mid] < target) {left = mid+1;} else if (nums[mid] > target) {right = mid-1;}else {return mid;}}return -1;}
}

注意:朴素二分算法因为太过简单,所以基本不会考察,重点是下方的边界二分查找算法的思想。


3.2 查找左右边界的二分算法

. - 力扣(LeetCode)

因为数组为非递减排序,也就是说数据要么相等,要么递增,而我们要找的就是相等数据target的开始和结束位置。

也就是说,我们要找到target的左边界位置和右边界位置,而target的左边的数据小于target,右边的数据大于target,数据同样具有二段性,可以使用二分查找算法。

同样定义left和right指针,定义mid指向他们的中间位置。

3.2.1 查找左边界

  1. 循环条件为:left < right,left == right时就是最终结果,结束循环
  2. nums[mid] < target ---> left = mid+1;//mid的位置肯定不为左边界,所以left = mid+1
  3. num[mid] >= target ---> right = mid;//mid的位置可能就是左边界,所以right=mid
  4. 更新mid:mid = left + (right - left) / 2;

3.2.2 查找右边界

  1. 循环条件为:left < right,left == right时就是最终结果,结束循环
  2. nums[mid] <= target ---> left = mid;//mid的位置可能就是右边界,所以left=mid
  3. nums[mid] > target ---> right = mid-1;//mid的位置肯定不为右边界,所以right= mid-1
  4. 更新mid:mid = left + (right - left + 1) / 2;因为更新right或left时,有-1操作,所以这里更新mid要+1(技巧,记忆即可)

class Solution {public int[] searchRange(int[] nums, int target) {int left = 0;int right = nums.length - 1;int[] arr = new int[]{-1,-1};//nums为空数组if (nums.length == 0) return arr;//查找左边界while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] < target) {left = mid + 1;}else {right = mid;}}//数组中不存在targetif (nums[left] != target) return arr;arr[0] = left;left = 0;right = nums.length - 1;//查找右边界while (left < right) {int mid = left + (right - left + 1) / 2;if (nums[mid] <= target) {left = mid;}else {right = mid - 1;}}arr[1] = left;return arr;}
}

注意:

  • 朴素二分算法的循环条件是:left <= right;因为要查找的数据可能就在left和right重叠的位置处。
  • 边界二分算法的循环条件是:left < right;因为当left == right时,就是最终结果。
  • 为避免数据溢出:mid = left + (right - left) / 2 或者 mid = left + (right - left + 1) / 2,朴素算法+1与否都可以,但是在找边界的二分算法中,若更新left或者right时,有-1出现,则更新的mid要+1。

3.3 时间复杂度分析

第一次二分查找剩下n/2个数据,第二次二分查找剩下n/4个数据,第三次二分查找升序n/8个数据,直至最后一次(第x次)二分查找剩下1个数据(此时查找成功),则n/2^{x} == 1,计算得x == logN,因为x就是循环执行的次数,故二分查找算法时间复杂度为:O(logN)

大家可能觉得O(logN)对于O(N)的提升不是很大,其实并不是这样,举个例子:

假设存储了2^{32}个数据,若用O(N)的算法去查找某一个数据,即遍历所有数据,那么最多需要查找2^{32}=4,294,967,296次;而使用O(logN)的算法,则最多查找32次就可以查找成功。

综上所述,O(logN)相对于O(N)的提升非常的大,故二分查找算法是一个极为高效的算法,每次都能排除掉一半的数据,从而快速定位到目标位置。

3、二分查找算法模版

对于算法的模版,一定不要死记硬背,要理解后再记忆,这样才可以在不同的题目中灵活使用该算法。

3.1 朴素二分模版

朴素二分模版是最简单的二分模版,因为简单,所以也很少考察。

注意:朴素模版中的循环条件为: left <= right

//朴素二分模版while (left <= right) {int mid = left + (right - left) / 2;//避免数据溢出//int mid = left + (right - left + 1) / 2;在朴素二分中,加不加1均可if(....) {left = mid+1;} else if (....) {right = mid-1;}else {return ....;}}

3.2 查找左右边界的二分模版

注意:边界模版中的循环条件为: left < right


4、算法应用【leetcode】

4.1 题一:搜素插入位置

. - 力扣(LeetCode)

4.1.1 思路分析

分析数据,可以发现target要插入的位置就是第一个比target大的数据的位置,而这个位置左侧的均小于target,右侧的数据均大于target,故具有二段性,可以使用二分查找算法。

而我们的目的就是:找到第一个大于target的数据的位置,返回这个位置的下标即可。

需要注意一个边界情况:当target比所以数据都大时,也就是说target要插入数组的末尾,需要特殊处理。

4.1.2 算法代码

class Solution {public int searchInsert(int[] nums, int target) {int left = 0;int right = nums.length-1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] < target) {left = mid + 1;}else {right = mid;}}return target > nums[left] ? left + 1 : left;}
}

4.2 题二:x的平方根

. - 力扣(LeetCode)

4.2.1 思路分析

分析数据,因为目标数据的平方是 小于或等于 x的,所以目标数据及其左侧数据(包括目标数据)的平方均小于等于x,右侧数据的平方均大于x。故具有二段性,可使用二分查找算法解决该题。

4.2.2 算法代码

class Solution {public int mySqrt(int x) {long left = 0;long right = x;while (left < right) {//mid*mid 可能超出范围,定义为long长整型long mid = left + (right - left + 1) / 2;if (mid * mid <= x) {left = mid;}else {right = mid - 1;}}return (int)left;}
}

4.3 题三:山峰数组的峰顶索引

. - 力扣(LeetCode)

4.3.1 思路分析

由题意可知,数组一定为山峰,故峰顶左侧的数据一定小于峰顶值,峰顶右侧的数据一定大于峰顶值,故数据具有二段性,可使用二分查找算法。且题目已说明使用O(logN)的算法,故必须使用二分查找算法。

算法思想很简单:

  1. 若arr[mid] > arr[mid-1],则峰顶一定在mid右侧或峰顶就为mid;//left = mid
  2. 若arr[mid] < arr[mid-1],则峰顶一定在mid左侧;//right = mid-1

4.3.2 算法代码

class Solution {public int peakIndexInMountainArray(int[] arr) {int left = 0;int right = arr.length - 1;while (left < right) {int mid = left + (right - left + 1) / 2;if(arr[mid] > arr[mid - 1]) {left = mid;}else {right = mid - 1;}}return left;}
}

4.4 题四:寻找峰值

. - 力扣(LeetCode)

4.4.1 思路分析

该题思路与上一题山峰数组的解题思路是一模一样的,只不过可能存在多个山峰,也就是说数组是完全无序的,所以,二分查找算法的使用并不局限于有序数组,只要数据具有二段性,就可以使用二分查找算法。

  1. 将中间值arr[mid]与arr[mid-1]比较,若arr[mid] < arr[mid-1],说明在左侧一定有峰值,而右侧是不确定的,可能有也可能没有,这样就可以过滤掉右侧数据,在左侧数据继续寻找山峰;
  2. 同样,若arr[mid] > arr[mid-1],说明右侧一定有山峰,而左侧不确定,过滤左侧数据,故发现数据具有二段性,能够使用二分查找算法。
  3. 因为 nums[-1] = nums[n] = -∞,所以即使数组为递增或递减序列时,也能够正确查找到峰值的位置。

4.4.2 算法代码

class Solution {public int findPeakElement(int[] arr) {int left = 0;int right = arr.length - 1;while (left < right) {int mid = left + (right - left + 1) / 2;if(arr[mid] > arr[mid - 1]) {left = mid;}else {right = mid - 1;}}return left;}
}

4.5 题五:寻找旋转排序数组中的最小值

. - 力扣(LeetCode)

4.5.1 思路分析

因为数组原来是升序排列,所以经过旋转,数值大的元素就移动到了数组的前面部分。

所以:

  1. 未经过旋转的元素必然小于等于数组的最后一个元素。
  2. 而经过旋转的元素必然大于数组的最后一个元素。
  3. 故数据具有二段性,可以使用二分查找算法。

因为我们是和数组的最后一个元素比较,所以即使在数组完全旋转的特殊情况下也可以得到正确结果。 

而如果是和数组的第一个元素比较的话,在特殊情况时,还需特殊处理,这种解法留给大家,可以锻炼大家的代码能力以及加强对二分查找算法的理解。

 4.5.2 算法代码

class Solution {public int findMin(int[] nums) {int left = 0;int right = nums.length - 1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] <= nums[nums.length-1]) {right = mid;}else {left = mid + 1;}}return nums[left];}
}

4.6 题六:点名 (原:剑指Offer:0~n-1 中缺失的数字 )

 . - 力扣(LeetCode)

 4.6.1 思路分析

  1. 在数组中,缺失的数字前的数据其值与其下标是相对应的。
  2. 缺失的数字后的数据其值都比其下标大1,故数据具有二段性,可以使用二分查找算法。
  3. 第一个数值与下标不对应的数据的位置,就是缺失的数据。

特殊情况:缺的是最后一个数据时,数组中的所有数据与其下标均对应,此时需要特殊处理。

4.6.2 算法代码

class Solution {public int takeAttendance(int[] records) {int left = 0;int right = records.length - 1;while (left < right) {int mid = left + (right - left) / 2;if (records[mid] > mid) {right = mid;}else {left = mid + 1;}}return records[left] == left ? left + 1 : left;}
}

END

这篇关于二分查找算法:朴素二分+左右边界二分力扣实战应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107707

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边