数据结构: 用队列实现栈(力扣225)

2024-08-26 04:28

本文主要是介绍数据结构: 用队列实现栈(力扣225),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(pushtoppop 和 empty)。

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

注意:

  • 你只能使用队列的标准操作 —— 也就是 push to backpeek/pop from frontsize 和 is empty 这些操作。
  • 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。

示例:

输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False

提示:

  • 1 <= x <= 9
  • 最多调用100 次 pushpoptop 和 empty
  • 每次调用 pop 和 top 都保证栈不为空

进阶:你能否仅用一个队列来实现栈。

代码如下:

//定义队列结构
typedef int QDataType;
typedef struct QueueNode {QDataType data;struct QDataType* next;
}QueueNode;
typedef struct Queue
{QueueNode* phead;QueueNode* ptail;int size;//因为不好遍历,只好保存有效数据个数
}Queue;//初始化
void QueueInit(Queue* pq)
{assert(pq);pq->phead = pq->ptail = NULL;pq->size = 0;
}// ⼊队列,队尾
void QueuePush(Queue* pq, QDataType x)
{assert(pq);//申请新节点QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));if (newnode == NULL){perror("malloc fail!");exit(1);}newnode->data = x;newnode->next = NULL;if (pq->phead ==NULL){pq->phead = pq->ptail = newnode;}else{//队列不为空pq->ptail->next = newnode;pq->ptail = pq->ptail->next;}pq->size++;
}
//队列判空
bool QueueEmpty(Queue* pq)
{assert(pq);return pq->phead == NULL && pq->ptail == NULL;
}
// 出队列,队头
void QueuePop(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));//只有一个结点的情况if (pq->phead == pq->ptail){free(pq->phead);pq->phead = pq->ptail = NULL;}else{//删除头元素 QueueNode* next = pq->phead->next;free(pq->phead);pq->phead = next;}pq->size--;
}//取队头数据
QDataType QueueFront(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->phead->data;
}
//取队尾数据
QDataType QueueBack(Queue* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->ptail->data;
}
//队列有效元素个数
int QueueSize(Queue* pq)
{assert(pq);return pq->size;
}//销毁队列
void QueueDestroy(Queue* pq)
{assert(pq);//assert(!QueueEmpty(pq));QueueNode* pcur = pq->phead;while (pcur){QueueNode* Next = pcur->next;free(pcur);pcur = Next;}pq->phead = pq->ptail = NULL;pq->size = 0;
}
typedef struct {Queue q1;Queue q2;
} MyStack;MyStack* myStackCreate() {MyStack* pst=(MyStack*)malloc(sizeof(MyStack));QueueInit(&pst->q1);QueueInit(&pst->q2);return pst;
}void myStackPush(MyStack* obj, int x) {if(!QueueEmpty(&obj->q1)){QueuePush(&obj->q1,x);   }else{QueuePush(&obj->q2,x);}
}
int myStackPop(MyStack* obj) {Queue*empQ=&obj->q1;Queue*noneQ=&obj->q2;if(!QueueEmpty(&obj->q1)){noneQ=&obj->q1;empQ=&obj->q2;}while(QueueSize(noneQ)>1){int front=QueueFront(noneQ);QueuePush(empQ,front);QueuePop(noneQ);}int pop=QueueFront(noneQ);QueuePop(noneQ);return pop;
}int myStackTop(MyStack* obj) {if(!QueueEmpty(&obj->q1)){return QueueBack(&obj->q1);}else{return QueueBack(&obj->q2);}
}bool myStackEmpty(MyStack* obj) {return QueueEmpty(&obj->q1)&& QueueEmpty(&obj->q2);
}void myStackFree(MyStack* obj) {QueueDestroy(&obj->q1);QueueDestroy(&obj->q2);free(obj);obj=NULL;
}/*** Your MyStack struct will be instantiated and called as such:* MyStack* obj = myStackCreate();* myStackPush(obj, x);* int param_2 = myStackPop(obj);* int param_3 = myStackTop(obj);* bool param_4 = myStackEmpty(obj);* myStackFree(obj);
*/

码云链接:比特就业课114期C++: 比特就业课114期C++数据结构内容 

这篇关于数据结构: 用队列实现栈(力扣225)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107537

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句