使用miniconda构建数据科学环境

2024-08-25 23:52

本文主要是介绍使用miniconda构建数据科学环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

数据科学中,不同时期项目代码往往是由不同的版本的python和第三方数据科学包构建,这些不同版本往往会存在兼容性问题,要运行这些代码,需要管理不同的版本的安装包。Conda是一个开源的包管理和环境管理系统,环境管理允许用户创建不同的独立的虚拟环境,可以在其中安装不同版本的python和包,而且支持方便快速地切换虚拟环境

anaconda和miniconda都集成了conda,二者的区别是anaconda预安装了300多个常用的数据科学包,安装包非常大(安装需要4~5G空间),有图形化界面,比较适合新手使用;而miniconda只包含python和一些核心的安装包(大约70个),安装包比较小(安装只需要500M空间),可以后期根据自己的需要进行数据科学包的安装,适合有经验的同学。

卸载Anaconda

anaconda的第三方包可能依赖不同版本的其他包和gcc,使用时间长了容易出现依赖版本混乱的情况,造成运行错误。需要卸载干净,以免重新安装后还有问题。

这里可以使用官方建议的卸载方法。

Uninstalling Anaconda Distribution — Anaconda documentation

  1. 打开您的终端应用程序。

  2. (可选)通过运行以下命令从所有终端 shell 配置文件中删除任何 conda 初始化脚本:

    conda activate
    conda init --reverse --all
  3. 使用rm -rf删除整个anaconda3目录。根据您的安装,此目录将位于您的根文件夹或 opt 文件夹中。查看下安装位置(mac上搜索anaconda)然后进行删除。

  4. Note 笔记
    要卸载 Miniconda,请将anaconda3替换为miniconda3 # The following are a few examples of how you
    # may need to delete your Anaconda folder
    rm -rf anaconda3
    rm -rf ~/anaconda3
    sudo rm -rf /opt/anaconda3 # 部分文件删除不掉时使用
  5. (可选)如果您在anaconda3目录之外创建了任何环境,您可以手动删除它们以增加计算机上的可用磁盘空间。

  6. 关闭并重新打开终端以刷新它,您不应再在终端提示符中看到(base) 。

安装Miniconda

1. 对mac用户,最简单的安装方式是通过package(后缀名为.pkg)进行安装,先下载需要的安装包,这里主要是M1芯片还是intel x86芯片。

安装包:

Latest Miniconda installer links by Python version — Anaconda documentation

2. 双击安装即可

3. 安装完成之后,验证按章是否成功

conda -V

conda 24.7.1 

更换国内数据源

在国内使用官方镜像进行安装会很慢,因此建议切换为国内的镜像源。

第一次运行,缺失.condarc,运行一下面这条命令,用户目录下就会多一个.condarc的配置文件

conda config --set show_channel_urls yes# 换其国内镜像源,以清华镜像为例
vim ~/.condarc# Vim的使用方法,运行上述命令后,按“i”键进入“INSERT”模式(最后一行会显示“INSERT”),
# 然后编辑condarc中的内容,编辑完成后,按“ESC”键退出编辑模式,然后按“Shifit+:”,最后一行显示“:”时,输入wq(保存退出)

将condarc配置文件内容修改为如下

channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 参考:https://www.cnblogs.com/Oraer/p/17431614.html

国内其他镜像源:

# 中科大镜像源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/# 阿里镜像源
conda config --add channels https://mirrors.aliyun.com/pypi/simple/# 豆瓣的python的源
conda config --add channels http://pypi.douban.com/simple/ # 显示检索路径,每次安装包时会将包源路径显示出来
conda config --set show_channel_urls yes
conda config --set always_yes True#执行以下命令清除索引缓存,保证用的是镜像站提供的索引
conda clean -i# 显示所有镜像通道路径命令
conda config --show channels
#**如果不想进入终端默认激活base环境: **
conda config --set auto_activate_base false

安装数据包

安装数据科学包前,先初更新和始化conda,conda init 这个命令会帮忙自动配置环境变量(如 .bashrc 或 .bash_profile 等),省去手动配置的麻烦。

conda update conda
conda init

新建conda环境,可以指定python版本 

conda create -n py312 python=3.12conda activate py312conda install numpy pandas scipy matplotlib seaborn jupyter notebook jupyterlab

安装完成后,在终端中输入“jupyter notebook” ,可以测试是否成功。

至此,一个初步的数据科学工作环境就搭建完成了!

参考文章:

1. Linux安装miniconda和换镜像源:https://www.cnblogs.com/Oraer/p/17431614.html

1. Miniconda3环境配置,换国内源_miniconda换源-CSDN博客

2. https://www.cnblogs.com/catting123/p/16557462.html

3. miniconda配置手册——基本配置、初始化、管理虚拟环境、包的操作-CSDN博客

这篇关于使用miniconda构建数据科学环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106974

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方