任意半径局部直方图类算法在PC中快速实现的框架。

2024-08-25 23:48

本文主要是介绍任意半径局部直方图类算法在PC中快速实现的框架。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自: 任意半径局部直方图类算法在PC中快速实现的框架。

  在图像处理中,局部算法一般来说,在很大程度上会获得比全局算法更为好的效果,因为他考虑到了图像领域像素的信息,而很多局部算法可以借助于直方图获得加速。同时,一些常规的算法,比如中值滤波、最大值滤波、最小值滤波、表面模糊等等都可以通过局部直方图进行加速。而传统的获取局部直方图计算量很大,特别是半径增加时,耗时会成平方关系增加。一些局部算法只有在半径较大时才会获得很好的效果,因此,必须找到一种合适的加速计算局部直方图的方式。

      在参考Median Filter in Constant Time.pdf一文附带的C的代码的基础上,本文提出了基于SSE加速的恒长任意半径局部直方图获取技术,可以大大加速算法的计算时间,特别是大半径时的提速更为明显。

      主要的优化思路是,沿着列方向一行一行的更行整行的列直方图,新的一行对应的列直方图更新时只需要减去已经不再范围内的那个像素同时加入新进入的像素的直方图信息。之后,对于一行中的第一个像素点,累加半径辐射范围内的列直方图,得到改点的局部直方图,对于行中的其他的像素,则类似于更新行直方图,先减去不在范围内那列的列直方图,然后加上移入范围内的列直方图。由于采用了基于SSE函数的加速过程,直方图想加和相减的速度较普通的加减法有了10倍以上的提速,因此大大的提高了整体的实用性。

       具体的过程我用代码加以说明:

    1、一些公用的内存分配过程

复制代码
    TMatrix *Row = NULL, *Col = NULL;unsigned char *LinePS, *LinePD;int  X, Y, K, Width = Src->Width, Height = Src->Height;int *RowOffset, *ColOffSet;unsigned short *ColHist    = (unsigned short *)IS_AllocMemory(256 * (Width + 2 * Radius) * sizeof(unsigned short), true);    if (ColHist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}unsigned short *Hist    = (unsigned short *)IS_AllocMemory(256 * sizeof(unsigned short), true);    if (Hist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}Ret = GetValidCoordinate(Width, Height, Radius, Radius, Radius, Radius, Edge, &Row, &Col);        //    获取坐标偏移量if (Ret != IS_RET_OK) goto Done8;
复制代码

  其中的ColHist用于保存一行像素对应的列直方图 ,注意这里的行是用的扩展后的行的大小即:Width + 2 * Radius。IS_AllocMemory是个内部使用了_mm_malloc定义的内存分配函数,主要是考虑SSE函数的16字节对齐问题。

      Hist变量用于保存每个像素点的局部直方图数据,任何基于局部直方图技术的函数最终都演变为对于该函数进行各种各样的计算。    

      GetValidCoordinate是一个用于辅助边界处像素点处理的函数,具体可详见附件中给出的代码。

      2、更新一行像素的列直方图

复制代码
for (Y = 0; Y < Height; Y++)
{if (Y == 0)                                            //    第一行的列直方图,要重头计算
    {for (K = -Radius; K <= Radius; K++)                    {LinePS = Src->Data + ColOffSet[K] * Src->WidthStep;for (X = -Radius; X < Width + Radius; X++){ColHist[X * 256 + LinePS[RowOffset[X]]]++;}}}else                                                //    其他行的列直方图,更新就可以了
    {LinePS = Src->Data + ColOffSet[Y - Radius - 1] * Src->WidthStep;        for (X = -Radius; X < Width + Radius; X++)        // 删除移出范围内的那一行的直方图数据
        {ColHist[X * 256 + LinePS[RowOffset[X]]]--;}LinePS = Src->Data + ColOffSet[Y + Radius] * Src->WidthStep;for (X = -Radius; X < Width + Radius; X++)        // 增加进入范围内的那一行的直方图数据
        {ColHist[X * 256 + LinePS[RowOffset[X]]]++;}}//  依次获取一行每个像素的局部直方图//  根据局部直方图获的结果
}
复制代码

  可见,这部分和普通的局部优化方式类似,没有什么特殊的地方。

  3、依次获取一行每个像素的局部直方图

复制代码
    for (Y = 0; Y < Height; Y++){//  更新一行像素的列直方图memset(Hist, 0, 256 * sizeof(unsigned short));        //    每一行直方图数据清零先LinePS = Src->Data + Y * Src->WidthStep;LinePD = Dest->Data + Y * Dest->WidthStep;for (X = 0; X < Width; X++){if (X == 0){for (K = -Radius; K <= Radius; K++)            //    行第一个像素,需要重新计算    HistgramAddShort(ColHist + K * 256, Hist);}else{/*  HistgramAddShort(ColHist + RowOffset[X + Radius] * 256, Hist);    HistgramSubShort(ColHist + RowOffset[X - Radius - 1] * 256, Hist);*/HistgramSubAddShort(ColHist + RowOffset[X - Radius - 1] * 256, ColHist + RowOffset[X + Radius] * 256, Hist);  //    行内其他像素,依次删除和增加就可以了
            }
        //  根据局部直方图获的结果
            LinePS++;LinePD++;}}
复制代码

  上面处理的过程其实和2的过程的优化道理是类似的,只不过一个是行方向,一个是列方向,聪明者自然能明白,稍微愚钝者请自己多多斟酌,自然有豁然开朗的时刻。

  4、 根据局部直方图获的结果

  根据不同的算法需求,结合局部直方图信息来获取结果,比如最大值算法可以用如下方式获得:

复制代码
    for (K = 255; K >= 0; K--){if (Hist[K] != 0){LinePD[X] = K;break;}}
复制代码

     关于直方图累加的代码如下:

复制代码
/// <summary>
/// 无符号短整形直方图数据相加,Y = X + Y, 整理时间2014.12.28; 
/// </summary>
/// <param name="X">加数。</param>
/// <param name="Y">被加数,结果保存于该数中。</param>
/// <remarks>使用了SSE优化。</remarks>
void HistgramAddShort(unsigned short *X, unsigned short *Y)
{*(__m128i*)(Y + 0)        =    _mm_add_epi16(*(__m128i*)&Y[0],        *(__m128i*)&X[0]);        //    不要想着用自己写的汇编超过他的速度了,已经试过了*(__m128i*)(Y + 8)        =    _mm_add_epi16(*(__m128i*)&Y[8],        *(__m128i*)&X[8]);*(__m128i*)(Y + 16)        =    _mm_add_epi16(*(__m128i*)&Y[16],    *(__m128i*)&X[16]);*(__m128i*)(Y + 24)        =    _mm_add_epi16(*(__m128i*)&Y[24],    *(__m128i*)&X[24]);*(__m128i*)(Y + 32)        =    _mm_add_epi16(*(__m128i*)&Y[32],    *(__m128i*)&X[32]);*(__m128i*)(Y + 40)        =    _mm_add_epi16(*(__m128i*)&Y[40],    *(__m128i*)&X[40]);*(__m128i*)(Y + 48)        =    _mm_add_epi16(*(__m128i*)&Y[48],    *(__m128i*)&X[48]);*(__m128i*)(Y + 56)        =    _mm_add_epi16(*(__m128i*)&Y[56],    *(__m128i*)&X[56]);*(__m128i*)(Y + 64)        =    _mm_add_epi16(*(__m128i*)&Y[64],    *(__m128i*)&X[64]);*(__m128i*)(Y + 72)        =    _mm_add_epi16(*(__m128i*)&Y[72],    *(__m128i*)&X[72]);*(__m128i*)(Y + 80)        =    _mm_add_epi16(*(__m128i*)&Y[80],    *(__m128i*)&X[80]);*(__m128i*)(Y + 88)        =    _mm_add_epi16(*(__m128i*)&Y[88],    *(__m128i*)&X[88]);*(__m128i*)(Y + 96)        =    _mm_add_epi16(*(__m128i*)&Y[96],    *(__m128i*)&X[96]);    *(__m128i*)(Y + 104)    =    _mm_add_epi16(*(__m128i*)&Y[104],    *(__m128i*)&X[104]);*(__m128i*)(Y + 112)    =    _mm_add_epi16(*(__m128i*)&Y[112],    *(__m128i*)&X[112]);*(__m128i*)(Y + 120)    =    _mm_add_epi16(*(__m128i*)&Y[120],    *(__m128i*)&X[120]);*(__m128i*)(Y + 128)    =    _mm_add_epi16(*(__m128i*)&Y[128],    *(__m128i*)&X[128]);*(__m128i*)(Y + 136)    =    _mm_add_epi16(*(__m128i*)&Y[136],    *(__m128i*)&X[136]);*(__m128i*)(Y + 144)    =    _mm_add_epi16(*(__m128i*)&Y[144],    *(__m128i*)&X[144]);*(__m128i*)(Y + 152)    =    _mm_add_epi16(*(__m128i*)&Y[152],    *(__m128i*)&X[152]);*(__m128i*)(Y + 160)    =    _mm_add_epi16(*(__m128i*)&Y[160],    *(__m128i*)&X[160]);*(__m128i*)(Y + 168)    =    _mm_add_epi16(*(__m128i*)&Y[168],    *(__m128i*)&X[168]);*(__m128i*)(Y + 176)    =    _mm_add_epi16(*(__m128i*)&Y[176],    *(__m128i*)&X[176]);*(__m128i*)(Y + 184)    =    _mm_add_epi16(*(__m128i*)&Y[184],    *(__m128i*)&X[184]);*(__m128i*)(Y + 192)    =    _mm_add_epi16(*(__m128i*)&Y[192],    *(__m128i*)&X[192]);*(__m128i*)(Y + 200)    =    _mm_add_epi16(*(__m128i*)&Y[200],    *(__m128i*)&X[200]);*(__m128i*)(Y + 208)    =    _mm_add_epi16(*(__m128i*)&Y[208],    *(__m128i*)&X[208]);*(__m128i*)(Y + 216)    =    _mm_add_epi16(*(__m128i*)&Y[216],    *(__m128i*)&X[216]);*(__m128i*)(Y + 224)    =    _mm_add_epi16(*(__m128i*)&Y[224],    *(__m128i*)&X[224]);    *(__m128i*)(Y + 232)    =    _mm_add_epi16(*(__m128i*)&Y[232],    *(__m128i*)&X[232]);*(__m128i*)(Y + 240)    =    _mm_add_epi16(*(__m128i*)&Y[240],    *(__m128i*)&X[240]);*(__m128i*)(Y + 248)    =    _mm_add_epi16(*(__m128i*)&Y[248],    *(__m128i*)&X[248]);
}
复制代码

  _mm_add_epi16可以一次性完成16个short类型的数据的加法,比传统的add指令快了很多倍。

     由于_mm_add_epi16是这对短整形数据进行的处理,因此,一般情况下改指令所能处理的半径不能大于127,如果需要大于127,则需要修改过程序中的short类型为int,同时需要使用_mm_add_epi32指令,这样程序的速度会有所下降。

  经过测试,在我的I5的台式机中,1024*768图像在直方图更新上所需要的平均之间约为30ms,相比局部算法的核心就算部分时间(比如上述的求最大值),可能大部分耗时并不在这里。

     附件的代码中有个完整的测试工程,并有我目前所有的TMatrix结构的完整代码,我以后的文章都将以改结构为依托进行处理。

     代码还共享了很多处理的函数,我很自信一定值得朋友去学习的。

     这种前后依赖的算法都有一个很致命的缺点,就是不可以并行,把图像分段处理,也会造成过多初始化耗时。

     代码下载地址:http://files.cnblogs.com/files/Imageshop/BaseFile.rar

 

****************************作者: laviewpbt   时间: 2015.4.20    联系QQ:  33184777 转载请保留本行信息**********************

这篇关于任意半径局部直方图类算法在PC中快速实现的框架。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106972

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、