【数据分享】1901-2023年1km分辨率逐月最高气温栅格数据(免费获取/全国/分省)

本文主要是介绍【数据分享】1901-2023年1km分辨率逐月最高气温栅格数据(免费获取/全国/分省),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

气温数据是我们最常用的气象指标之一,之前我们给大家分享过来源于国家青藏高原科学数据中心提供的1901-2023年1km分辨率逐月平均气温栅格数据(可查看之前的文章获悉详情)!

本次我们分享的同样是来自国家青藏高原科学数据中心的高精度气温栅格数据——1901-2023年1km分辨率的逐月最高气温栅格数据!

我们从官方网站下载的逐月最高气温数据的单位是0.1 ℃,数据格式为NETCDF,即.nc格式。为方便大家使用,我们对原始数据进行了一些处理,单位转化为摄氏度(℃),格式转为栅格(.tif)格式。此外,全国范围的数据非常大,不方便使用,我们将全国数据划分为了分省份的数据!需要重点说明的是:这儿的逐月最高气温是当月每日最高气温的月平均值!

大家在公众号回复关键词 317 可免费获取全国任意一个省份的1901-2023年1km分辨率逐月最高气温数据!

如果想要全国范围的最高气温栅格数据,请在公众号回复关键词 318按转发要求获取!以下为数据的详细介绍:

01 数据预览

全国范围的数据

首先我们先来看一下全国范围的数据,我们会提供三种数据:

①原始nc格式的数据

②空间范围大于中国国界的tif格式数据

我们以2023年7月的全国最高气温为例来预览一下,由原始.nc格式数据转为的.tif格式数据的范围为矩形范围,且大于中国国界:

2023年7全国最高气温(大于全国范围)

③中国国界范围的tif格式数据

我们以国界为范围提取出国界范围的最高气温数据:

2023年7月全国最高气温(全国范围)

分省份的数据

对于分省份的数据,我们以2023年7月湖北省的最高气温为例来预览一下:

2023年7月湖北省最高气温

02 数据详情

数据来源:

数据来源于彭守璋学者在国家青藏高原科学数据中心平台上分享的数据,网址为:https://data.tpdc.ac.cn/zh-hans/data/35ffff9f-8e1b-4296-801f-d8231e4f8dc3

数据说明:

官网上对数据集进行了说明,该数据根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。

数据格式:

原始数据格式:NETCDF(.nc)格式我们处理出来的数据格式:栅格格式(.tif)

数据单位:

栅格(.tif)格式:摄氏度( ℃)NETCDF(.nc)格式:0.1 ℃

时间范围:

1901-2023年(逐月)

数据坐标:

GCS_WGS_1984

空间范围:

全国/分省

范围数据提取:

依据来源于天地图官方网站提供的审图号为GS(2024)0650号的全国和省级行政边界数据(可查看之前的文章获悉详情),从大于全国范围的数据中裁剪得到全国和分省的DEM数据。

空间分辨率:

0.0083333°(约1km)

数据的引用:

彭守璋. (2020). 中国1km分辨率月最高温度数据集(1901-2023). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.3185722.Peng, S. (2020). 1-km monthly maximum temperature dataset for China (1901-2023). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.3185722.

发布数据的文章的引用:

1.Peng, S.Z., Ding, Y.X., Wen, Z.M., Chen, Y.M., Cao, Y., & Ren, J.Y. (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agricultural and Forest Meteorology, 233, 183–194.

2.Ding, Y.X., & Peng, S.Z. (2020). Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability, 12(2), 477.

3.Peng, S.Z., Ding, Y.X., Liu, W.Z., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931–1946. https://doi.org/10.5194/essd-11-1931-2019

4.Peng, S. , Gang, C. , Cao, Y. , & Chen, Y. . (2017). Assessment of climate change trends over the loess plateau in china from 1901 to 2100. International Journal of Climatology.

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

03 数据获取

获取数据可以关注下方公众号~

这篇关于【数据分享】1901-2023年1km分辨率逐月最高气温栅格数据(免费获取/全国/分省)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106286

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变