基于SHAP进行特征选择和贡献度计算——可解释性机器学习

2024-08-25 12:12

本文主要是介绍基于SHAP进行特征选择和贡献度计算——可解释性机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方法介绍

SHAP(SHapley Additive exPlanations)是一个 Python 包,旨在解释任何机器学习模型的输出。SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。对于每个预测样本,模型会产生一个预测值,而 SHAP 值则表示该样本中每个特征的贡献度。

假设第i个样本为Xi,第i个样本的第j个特征为Xij,模型对该样本的预测值为yi,整个模型的基线(通常是所有样本的目标变量的均值)为 ybase,那么 SHAP 值服从以下等式:

yi=ybase+f(Xi1)+f(Xi2)+⋯+f(Xik)

其中 f(Xij)表示第i个样本中第j个特征的 SHAP 值。从直观上看,f(Xi1)表示第i个样本中第1个特征对最终预测值yi的贡献。当f(Xj1)>0时,说明该特征提升了预测值,有正向作用;反之,则说明该特征降低了预测值,有反向作用。

解释器Explainer
 

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer(例如deep、gradient、kernel、tree、sampling等),以tree为例,它支持常用的XGB、LGB、CatBoost等树集成算法。

explainer = shap.TreeExplainer(model) # #这里的model在准备工作中已经完成建模,模型名称就是modelshap_values = explainer.shap_values(X) # 传入特征矩阵X,计算SHAP值

上面的shap_values对象是一个包含两个array的list。第一个array是负向结果的SHAP值,而第二个array是正向结果的SHAP值。通常从预测正向结果的角度考虑模型的预测结果,所以会拿出正向结果的SHAP值(拿出shap_values[1])。

局部可解释性Local Interper,Local可解释性提供了预测的细节,侧重于解释单个预测是如何生成的。它可以帮助决策者信任模型,并且解释各个特征是如何影响模型单次的决策。

使用例子

import xgboost as xgb
from sklearn.model_selection import train_test_split
import shap
import pandas as pddata = pd.read_csv('example.csv')
X = data[['A', 'B', 'C', 'D', 'E']]
Y = data['F']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, shuffle=False)
xgb_model = xgb.XGBRegressor(random_state=42)
xgb_model.fit(X_train, Y_train)
explainer = shap.Explainer(xgb_model)
shap_values = explainer(X_test)shap.summary_plot(shap_values)  #提琴图shap.plots.bar(shap_values)  # Bar Plotshap.plots.bar(shap_values.cohorts(2).abs.mean(0))  # 队列图shap.plots.heatmap(shap_values[1:1000])  # 热图shap.plots.waterfall(shap_values[0])  # 瀑布图shap.initjs()
explainer = shap.TreeExplainer(xgb_model)
shap_values = explainer.shap_values(X_test)
def p(j):return(shap.force_plot(explainer.expected_value, shap_values[j,:], X_test.iloc[j,:]))
p(0)shap_values = explainer.shap_values(X_test)[1]
shap.decision_plot(explainer.expected_value, shap_values, X_test)

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

这篇关于基于SHAP进行特征选择和贡献度计算——可解释性机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1105520

相关文章

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件