从PCD文件写入和读取点云数据

2024-08-25 06:38
文章标签 数据 读取 写入 点云 pcd

本文主要是介绍从PCD文件写入和读取点云数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   (1)学习向PCD文件写入点云数据

             建立工程文件ch2,然后新建write_pcd.cpp  CMakeLists.txt两个文件

  write_pcd.cpp :

#include <iostream>              //标准C++库中的输入输出的头文件
#include <pcl/io/pcd_io.h>           //PCD读写类相关的头文件
#include <pcl/point_types.h>      //PCL中支持的点类型的头文件intmain (int argc, char** argv)
{//实例化的模板类PointCloud  每一个点的类型都设置为pcl::PointXYZ
/*************************************************点PointXYZ类型对应的数据结构Structure PointXYZ{float x;float y;float z;};
**************************************************/pcl::PointCloud<pcl::PointXYZ> cloud;// 创建点云  并设置适当的参数(width height is_dense)cloud.width    = 5;cloud.height   = 1;cloud.is_dense = false;  //不是稠密型的cloud.points.resize (cloud.width * cloud.height);  //点云总数大小//用随机数的值填充PointCloud点云对象 for (size_t i = 0; i < cloud.points.size (); ++i){cloud.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}//把PointCloud对象数据存储在 test_pcd.pcd文件中pcl::io::savePCDFileASCII ("test_pcd.pcd", cloud);//打印输出存储的点云数据std::cerr << "Saved " << cloud.points.size () << " data points to test_pcd.pcd." << std::endl;for (size_t i = 0; i < cloud.points.size (); ++i)std::cerr << "    " << cloud.points[i].x << " " << cloud.points[i].y << " " << cloud.points[i].z << std::endl;return (0);
}

 

CMakeLists.txt:(第一次接触CMake所以注释的比较多,废话比较多,所以有助于理解)

cmake_minimum_required ( VERSION 2.6 FATAL_ERROR)   #对于cmake版本的最低版本的要求
project(ch2)                                        #建立的工程名,例如源代码目录路径的变量名为CH_DIR#工程存储目录变量名为CH_BINARY_DIR
#要求工程依赖的PCL最低版本为1.3,并且版本至少包含common和IO两个模块  这里的REQUIRED意味着如果对应的库找不到 则CMake配置的过程将完全失败,
#因为PCL是模块化的,也可以如下操作:
#           一个组件  find_package(PCL 1.6 REQUIRED COMPONENTS  io)
#           多个组件  find_package(PCL 1.6 REQUIRED COMPONENTS commom io)
#           所有组件  find_package(PCL 1.6 REQUIRED )                    
find_package(PCL 1.3 REQUIRED)  #下面的语句是利用CMake的宏完成对PCL的头文件路径和链接路径变量的配置和添加,如果缺少下面几行,生成文件的过程中就会提示
#找不到相关的头文件,在配置CMake时,当找到了安装的PCL,下面相关的包含的头文件,链接库,路径变量就会自动设置
#                    PCL_FOUND:如果找到了就会被设置为1 ,否则就不设置
#                    PCL_INCLUDE_DIRS:被设置为PCL安装的头文件和依赖头文件的目录
#                    PCL_LIBRARIES:被设置成所建立和安装的PCL库头文件
#                    PCL_LIBRARIES_DIRS:被设置成PCL库和第三方依赖的头文件所在的目录
#                    PCL_VERSION:所找到的PCL的版本
#                    PCL_COMPONENTS:列出所有可用的组件
#                    PCL_DEFINITIONS:列出所需要的预处理器定义和编译器标志
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARIES_DIRS})
add_definitions(${PCL_DEFINITIONS})#这句话告诉CMake从单个源文件write_pcd建立一个可执行文件
add_executable(write_pcd write_pcd.cpp)
#虽然包含了PCL的头文件,因此编译器知道我们现在访问所用的方法,我们也需要让链接器知道所链接的库,PCL找到库文件由
#PCL_COMMON_LIBRARIES变量指示,通过target_link_libraries这个宏来出发链接操作
target_link_libraries(write_pcd ${PCL_COMMON_LIBRARIES} ${PCL_IO_LIBRARIES})

之后就 cd   到文件下

                   mkdir  build

                   cd build

 

                   cmake ..

                   make

生成可执行文件后执行的结果:

 

(2)学习如何从PCD文件读取点云数据

读取PCD点云数据只需在工程文件下建立新的文件write_pcd.cpp

write.cpp:

#include <iostream>              //标准C++库中的输入输出的头文件
#include <pcl/io/pcd_io.h>       //PCD读写类相关的头文件
#include <pcl/point_types.h>     //PCL中支持的点类型的头文件int
main (int argc, char** argv)
{ //创建一个PointCloud<pcl::PointXYZ>    boost共享指针并进行实例化pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);//打开点云文件if (pcl::io::loadPCDFile<pcl::PointXYZ> ("test_pcd.pcd", *cloud) == -1) {PCL_ERROR ("Couldn't read file test_pcd.pcd \n");return (-1);}
//默认就是而二进制块读取转换为模块化的PointCLoud格式里pcl::PointXYZ作为点类型  然后打印出来std::cout << "Loaded "<< cloud->width * cloud->height<< " data points from test_pcd.pcd with the following fields: "<< std::endl;for (size_t i = 0; i < cloud->points.size (); ++i)std::cout << "    " << cloud->points[i].x<< " "    << cloud->points[i].y<< " "    << cloud->points[i].z << std::endl;return (0);
}

 

那么要编译此文件只需在CMakeLists.txt最下面添加两行代码

add_executable(write_pcd write_pcd.cpp)
add_executable(read_pcd read_pcd.cpp)
target_link_libraries(write_pcd ${PCL_COMMON_LIBRARIES} ${PCL_IO_LIBRARIES})
target_link_libraries(read_pcd ${PCL_COMMON_LIBRARIES} ${PCL_IO_LIBRARIES})

编译后执行的结果如下

 

 如果想看PCD文件的数据,可以找到test_pcd.pcd后缀名改为.txt即可打开如下所示:

(仔细查看文件头 的顺序也就是之前介绍的文件头顺序)

# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 5
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 5
DATA ascii
0.35222197 -0.15188313 -0.10639524
-0.3974061 -0.47310591 0.29260206
-0.73189831 0.66710472 0.44130373
-0.73476553 0.85458088 -0.036173344
-0.46070004 -0.2774682 -0.91676188

总结

pcl::PointCloud<pcl::PointXYZ> cloud ;  //写入点云数据的声明,就是三个float类型的数据,

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);这是声明的数据类型,用来存储我们打开的点云数据格式,是共享指针类型

微信公众号号可扫描二维码一起共同学习交流

未完待续******************************8

这篇关于从PCD文件写入和读取点云数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1104823

相关文章

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue