《概率机器人》里程计运动模型gmapping中代码解析

2024-08-25 06:32

本文主要是介绍《概率机器人》里程计运动模型gmapping中代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

里程计运动模型(odometery motion model)用距离测量代替控制。实际经验表明虽然里程计虽然仍存在误差,但通常比速度运动模型更加的精确。相比于速度运动模型运动信息 ut

(x¯t1x¯t)

为了提取相对的距离, ut 被转变为三个步骤的序列:旋转,平移,另一个旋转,
测距模型
上图就是里程计的测距模型,同样这些旋转和平移都是有噪声的。
首先由里程计算 p(xt|ut,xt1) 的算法,算法的输入是机器人的初始位姿 xt1 ,从机器人里程计获得的一对位姿 ut=(x¯t1,x¯t) ,以及一个假定的最终姿态 xt ,输出的数值概率是 p(xt|ut,xt1)

这里写图片描述

算法的2-4行是从里程计的读数获取相对运动参数 (δrot1 δtrans δrot2)T
第5-7行是相同的,就是计算位姿为 xt1 xt 的相对运动参数,
第8-10行是计算误差概率,
第11行返回各自的误差概率P1 ,P2 ,P3相乘得到的组合误差概率,假定不同误差源之间是相互独立的,变量 α1 α4 是指定机器人运动噪声的机器人的特定参数。
基于里程计运动模型的采样算法

这里写图片描述

数学推导:根据上上面的图应该不难推导出算法中的 (δrot1 δtrans δrot2)T ,为了建立运动误差模型,假设旋转和平移的“真”值是测量值减去均值为0 方差为 b2 的独立噪声 ϵb2 得到也就是上述算法中的5-7行,为了计算旋转和平移的真值引入了误差参数 α1 α4 ,所以实际位置 xt ,从 xt1 经过初始旋转 δ^rot1 跟随平移距离 δ^trans 和另一个旋转 δ^rot2 得到

这里写图片描述
这里的时刻t的位姿用 xt1=(x y θ)T
那么根据给定的运动模型采样算法,,对于不同的误差参数也会有不同的概率分布:
这里写图片描述
第一个模型的采样参数是中等的,可以说是正常的,第二个和第三个扥别是比较大的平移和旋转的误差所造成的。

Gmapping中实现里程计运动模型的采样程序如下:

这个函数的输入是机器人的当前位姿pnew和上一时刻的机器人的位姿pold,

OrientedPoint 
MotionModel::drawFromMotion(const OrientedPoint& p, const OrientedPoint& pnew, const OrientedPoint& pold) const{double sxy=0.3*srr;  //srr我理解为两轮子里程计的方差OrientedPoint delta=absoluteDifference(pnew, pold); //具体如下面的介绍OrientedPoint noisypoint(delta);//存储噪声估计noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;return absoluteSum(p,noisypoint);
}

首先解释一下函数:

OrientedPoint delta=absoluteDifference(pnew,pold);double 

具体的 内容如下

orientedpoint<T,A> absoluteDifference(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){orientedpoint<T,A> delta=p1-p2;delta.theta=atan2(sin(delta.theta), cos(delta.theta));double s=sin(p2.theta), c=cos(p2.theta);return orientedpoint<T,A>(c*delta.x+s*delta.y, -s*delta.x+c*delta.y, delta.theta);
}

就是计算位姿的变化量,这个OrientedPoint delta的计算 结果对应的理论公式的结果就是

(xx)cosθ+(yy)sinθ(xx)sinθ+(yy)cosθΔθ

计算新旧帧的绝对误差.具体就不再深入。
那么对于其中的三行代码是分别给位姿的三个两添加噪声进去,为什么要这样写呢?

noisypoint.x+=sampleGaussian(srr*fabs(delta.x)+str*fabs(delta.theta)+sxy*fabs(delta.y));noisypoint.y+=sampleGaussian(srr*fabs(delta.y)+str*fabs(delta.theta)+sxy*fabs(delta.x));noisypoint.theta+=sampleGaussian(stt*fabs(delta.theta)+srt*sqrt(delta.x*delta.x+delta.y*delta.y));

首先我们对sampleGaussian( b2 )函数已经是有了解了,这个意思就是以均值为0 方差为 b2 的近似的正态分布的采样算法。所以这些括号里的都是计算方差的,为什么参数不同呢?仔细看看就能找到规律了,但是明白之前的一篇博客里是有对srr srt str stt这些高斯模型参数的设置的,分别代表delta的三个变量之间的方差而已。
接下来的程序

noisypoint.theta=fmod(noisypoint.theta, 2*M_PI);if (noisypoint.theta>M_PI)noisypoint.theta-=2*M_PI;

百度一下fmod()函数是对浮点型数据进行取模运算,就是计算
noisypoint.theta/2*M_PI的余数。 因为要把角度差限定在 [π π] 之间。
最后是返回累计的噪声:
absoluteSum(p,noisypoint);
这个函数的实现代码是

template <class T, class A>
orientedpoint<T,A> absoluteSum(const orientedpoint<T,A>& p1,const orientedpoint<T,A>& p2){double s=sin(p1.theta), c=cos(p1.theta);return orientedpoint<T,A>(c*p2.x-s*p2.y,s*p2.x+c*p2.y, p2.theta) + p1;

P1是当前机器人的位姿,前面的c*p2.x-s*p2.y, s*p2.x+c*p2.y, p2.theta是分别在P1的位姿上加上各自的噪声分量。

*这是我个人的理解,可能有一些偏差,或者错误,有错误还请指正,当然不喜勿喷

这篇关于《概率机器人》里程计运动模型gmapping中代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104806

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶