回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出
  • 一、NGO-HKELM 模型
      • 1. NGO(北方苍鹰优化算法)
      • 2. HKELM(混合核极限学习机)
      • 3. NGO-HKELM回归预测模型建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出

一、NGO-HKELM 模型

NGO-HKELM回归预测模型结合了北方苍鹰优化算法(NGO)和混合核极限学习机(HKELM),其详细原理和建模流程如下:

1. NGO(北方苍鹰优化算法)

NGO是一个基于自然界苍鹰捕食行为的优化算法。主要步骤包括:

  • 初始化:生成一个初始的飞蛾种群,每只飞蛾代表一个潜在的解。
  • 适应度评估:计算每只飞蛾对应解的适应度值,这通常基于目标函数的值。
  • 位置更新:通过模拟苍鹰捕食行为来更新飞蛾的位置。主要包括模仿苍鹰的盘旋行为来引导飞蛾向更优解靠近。
  • 优化过程:迭代更新飞蛾的位置,以寻求全局最优解。

在HKELM建模中,NGO通常用于优化HKELM模型的参数,如核函数参数和正则化参数,以提高模型的预测性能。

2. HKELM(混合核极限学习机)

HKELM是一种改进的极限学习机(ELM),通过使用混合核函数来提高模型的灵活性和表达能力。主要步骤包括:

  • 核函数选择:HKELM使用混合核函数(例如线性核、高斯核、拉普拉斯核等)的组合,以获得更好的拟合能力。混合核函数可以更好地捕捉数据的非线性特性。
  • 特征映射:输入数据通过混合核函数进行映射,将数据映射到高维特征空间。
  • 线性回归:在高维特征空间中,通过线性回归来拟合数据,计算出输出权重。
  • 输出预测:根据计算出的权重,对新数据进行预测。

3. NGO-HKELM回归预测模型建模流程

  1. 数据预处理

    • 标准化或归一化输入数据。
    • 分割数据集为训练集和测试集。
  2. 核函数设计

    • 选择适当的混合核函数(如线性核、高斯核等)并设定其初始参数。
  3. 优化过程

    • 使用NGO算法优化HKELM的核函数参数和正则化参数。
    • 通过NGO算法更新参数,以最小化回归预测误差或其他目标函数。
  4. 模型训练

    • 使用优化后的核函数参数和正则化参数训练HKELM模型。
    • 计算特征映射和回归系数。
  5. 模型预测

    • 将训练好的HKELM模型应用于测试集或新数据进行预测。
    • 根据混合核函数映射测试数据,使用回归系数进行预测。
  6. 性能评估

    • 使用评估指标(如均方误差、绝对误差等)评估模型在测试集上的性能。
    • 调整参数和模型结构以进一步提高性能(如果需要)。

总结

NGO-HKELM回归预测模型通过结合北方苍鹰优化算法和混合核极限学习机,能够利用优化算法提高HKELM的性能,同时混合核函数增强了模型对复杂数据模式的捕捉能力。这种组合方法通常能提供更高的预测准确性和更强的泛化能力。

二、实验结果

NGO-HKELM回归预测结果
在这里插入图片描述

HKELM回归预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化混合核极限学习机的数据预测Matlab程序NGO-HKELM 多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104538

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L