leetcode 2461.长度为k子数组的最大和

2024-08-24 15:28

本文主要是介绍leetcode 2461.长度为k子数组的最大和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

题目描述

示例1:

示例2:

提示:

解题思路

滑动窗口法

概念

应用场景及特点:

思路

流程展示

代码

复杂度分析


题目描述

给你一个整数数组nums和一个整数k。请你从nums中满足下述条件的全部子数组中找出最大子数组和:

  • 子数组的长度是k,且
  • 子数组中的所有元素各不相同

返回满足题面要求的最大子数组和。如果不存在子数组满足这些条件,返回0
子数组是数组中一段连续非空的元素序列。

示例1:

输入:nums = [1,5,4,2,9,9,9], k = 3
输出:15
解释:nums 中长度为 3 的子数组是:
- [1,5,4] 满足全部条件,和为 10 。
- [5,4,2] 满足全部条件,和为 11 。
- [4,2,9] 满足全部条件,和为 15 。
- [2,9,9] 不满足全部条件,因为元素 9 出现重复。
- [9,9,9] 不满足全部条件,因为元素 9 出现重复。
因为 15 是满足全部条件的所有子数组中的最大子数组和,所以返回 15 。

示例2:

输入:nums = [4,4,4], k = 3
输出:0
解释:nums 中长度为 3 的子数组是:
- [4,4,4] 不满足全部条件,因为元素 4 出现重复。
因为不存在满足全部条件的子数组,所以返回 0 。

提示:

  • 1 <= k <= nums.length <= 105
  • 1 <= nums[i] <= 105

解题思路

滑动窗口法

概念

滑动窗口是一个在序列上移动的区间,通常由左右两个指针来界定这个区间的范围。通过移动指针来改变窗口的大小和位置,在窗口移动的过程中,根据问题的需求进行特定的计算和处理。

应用场景及特点

  1. 子数组 / 子串问题
  • 当需要在一个序列中找到满足特定条件的连续子数组或子串时,滑动窗口非常适用。例如,寻找和为特定值的连续子数组、含有特定字符的最长子串等。
  • 窗口的大小通常是动态变化的,根据问题的条件进行调整。
  1. 高效性
  • 相比于暴力枚举所有可能的子数组 / 子串,滑动窗口法通常能够在更短的时间内找到解。因为它利用了子数组 / 子串的连续性和窗口的滑动特性,避免了重复计算。
  1. 指针移动规则
  • 通常有两个指针,一个指向窗口的左端,一个指向窗口的右端。根据问题的具体要求,以特定的方式移动指针。
  • 例如,在寻找满足特定条件的最小子数组时,可能会先扩大窗口直到满足条件,然后再缩小窗口以找到最小的满足条件的窗口。

思路

  1. 初始化
  • 使用一个滑动窗口,窗口大小为 k
  • 创建一个计数器(可以使用 collections.Counter)来记录窗口中元素的出现次数。
  • 初始化当前窗口的和为 0,最大子数组和为 0。
  1. 滑动窗口遍历
  • 首先,将窗口的前 k 个元素加入窗口,并计算它们的和以及使用计数器记录元素出现次数。
  • 检查窗口中的元素是否各不相同。如果是,更新最大子数组和为当前窗口的和。
  • 然后,向右滑动窗口,每次将新元素加入窗口,将离开窗口的元素从计数器中移除,并更新窗口的和。
  • 再次检查窗口中的元素是否各不相同。如果是,与当前最大子数组和比较并更新。
  1. 返回结果
  • 遍历完整个数组后,返回最大子数组和。

流程展示

代码

class Solution:def maximumSubarraySum(self, nums: List[int], k: int) -> int:ans = 0cnt = Counter(nums[:k-1])s = sum(nums[:k-1])for in_,out in zip(nums[k-1:],nums):cnt[in_] += 1s += in_if len(cnt) == k:ans = max(ans, s)cnt[out] -= 1if cnt[out] == 0:del cnt[out]s -= outreturn ans

复杂度分析

  • 时间复杂度:由于只需要对数组进行一次遍历,时间复杂度为 O(n),其中 n 是数组的长度。
  • 空间复杂度:使用了计数器和有限的几个变量,空间复杂度为 O(k),其中 k 是窗口的大小。

这篇关于leetcode 2461.长度为k子数组的最大和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102865

相关文章

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a