NASA:ARM 增强短波实验(ARESE)太阳辐射数据

2024-08-24 13:44

本文主要是介绍NASA:ARM 增强短波实验(ARESE)太阳辐射数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

摘要

代码

网址推荐

0代码在线构建地图应用

机器学习


ARM Enhanced Shortwave Experiment (ARESE) Solar Radiation Data

简介

ARESE 研究了晴朗和多云大气对太阳辐射的吸收。 测量使用了三个飞机平台:一架高空载人埃格雷特飞机、一架装有仪器的双水獭飞机和美国宇航局 ER-2,以及卫星和俄克拉荷马州中北部的 ARM 中央和扩展设施。 该项目于 1995 年 9 月 22 日至 11 月 1 日进行。 活动摘要 ARESE 是 ARM 增强短波实验,1995 年 11 月 1 日在俄克拉荷马州的部署非常成功。 这次为期五周的活动的目的是进行一系列仪器飞行,测量太阳能与晴朗和多云天空的相互作用,以便对最近观测到的多云大气吸收增强现象提供更多的了解。

摘要

为了实现这些目标,ARESE 综合利用卫星、飞机和地面观测,在整个大气柱的不同高度对太阳通量进行高精度测量。 其核心是精心 "堆叠 "的双水獭号和埃格雷特号 "云夹层",水獭号在 1500 - 5000 英尺高度,埃格雷特号在 43000 英尺高度,由在 65000 英尺高度飞行的 ER-2 号飞机飞越。 所有三架飞机都携带了相同的上视和下视 "瓦莱罗 "辐射计,并飞越了 CART 中央和扩展设施中相同的上视辐射计。 来自 GOES 卫星的辐射测量被用来检索大气顶部通量。 这些通量测量数据得到了来自地面、埃格雷特和 ER-2 号卫星的各种云特性测量数据的补充,其中包括雷达、激光雷达和多光谱测量数据。

这些基准 ARESE 飞行于 9 月 25 日至 11 月 1 日在 CART 站点进行。 在此期间,我们进行了 12 次科学数据飞行,在从晴朗到多云的各种大气条件下积累了约 60 个小时的飞行中数据。 这些飞行的详细情况见下表,其中包括:在散射、破碎和实心阴云条件下的云强迫实验,包括低、中、高云层;晴空柱吸收和表面反照率测量;晴空通量剖面测量;以及两架飞机进行的飞行中、同高度通量测量的相互比较。 这些数据看来质量上乘,是检验我们对晴朗和多云大气中太阳辐射吸收情况的独特数据集。 除了这些基线太阳吸收实验外,ER-2 还进行了一些关键的校准实验。 这些实验使用来自 MODIS 机载模拟器(MAS)的高精度光谱辐射测量值来校准来自 GOES 卫星的辐射测量值,并改进将光谱辐射量转换为光谱通量的检索算法。

这次部署的成功是由五个能源部实验室、三个美国国家航空航天局中心、十几所大学和三家飞机公司组成的多实验室多机构团队共同努力的结果。 ARM 计划赞助了地面测量,ARM-UAV(无人驾驶航空飞行器)赞助了埃格雷特和奥特的协调测量,ARM 和 NASA 赞助了 ER-2 飞行。 资金由能源部的 ARM 计划和国防部的战略环境研究与发展计划 (SERDP) 提供。
日期 平台(O=OTER) (E=EGRETT) 测量条件 9-25 O, E, ER-2 沿西北航迹的实云到碎云 9-29 O, E, ER-2 散云到碎云,大量湍流 10-03 O, ER-2 中央设施 4、7、10、13、16、19 千尺高空的晴空剖面;
10-11 O, E, ER-2 晴空反照率、云柱吸收和相互比较 10-13 O, E 西北航迹上的云天吸收(高层云和卷云) 10-17 O, E, ER-2 晴空任务,西南和西北航迹上的数据相互比较 10-19 O, E, ER-2 晴空反照率、云柱吸收 西北航迹 10-24 O、 10-26 O, E 厚卷云层到破碎云层再到晴空 10-28 O 晴空,仅在 Charlie Whitlock 辐射计上方 500 英尺处进行 Otter 实验,以探索气溶胶加热情况--也是极好的反照率数据 10-30 O, E 厚均匀的中低层云层 11-01 O, E 实心云层到破碎云层

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ARESE_ER2_MAS",cloud_hosted=True,bounding_box=(-119.91, 20.25, -84.93, 38.55),temporal=("1995-09-25", "1995-10-25"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于NASA:ARM 增强短波实验(ARESE)太阳辐射数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102649

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr