深度学习小笔记05-扩展autograd-摘抄自《深度学习框架PyTorch:入门与实践》陈云-附个人书评

本文主要是介绍深度学习小笔记05-扩展autograd-摘抄自《深度学习框架PyTorch:入门与实践》陈云-附个人书评,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么摘抄这一段,因为我认为这里是一个非常有用的部分,看完autograd就想去问答区提问:
训练指定层
然后发现没有c币,于是乎暂时作罢,结果发现答案就在下一小节(先看完再想问题,不然浪费了一个好问题),没办法我就是这么热爱思考的一个人,看完立刻就有问题,等不到再看一段书。


— 我是分界线—
p94:目前,绝大多数函数都可以使用autograd实现反向求导,但如果需要自己写一个复杂的函数,不支持自动反向求导怎么办?答案是写一个Function,实现它的前向传播和反向传播代码,Function对应于计算图中的矩形,它接收参数,计算并返回结果。下面给出一个例子:

class Mul(Function):@staticmethoddef forward(ctx, w, x, b, x_requires_grad = True):ctx.x_requires_grad = x_requires_gradctx.save_for_backward(w,x)output = w*x+breturn output@staticmethoddef backward(ctx, grad_output):w,x = ctx.saved_variablesgrad_w = grad_output * xif ctx.x_requires_grad:grad_x = grad_output * welse:grad_x = Nonegrad_b = grad_output * 1return grad_w, grad_x, grad_b, None

对以上代码的分析如下。

  • 自定义的Function需要继承autograd.Function,没有构造函数__init__,forward和backward函数都是静态方法
  • forward函数的输入和输出都是tensor,backward函数的输入和输出都是variable
  • backward函数的输出和forward函数的输入一一对应,backward函数的输入和forward函数的输出一一对应
  • backward函数的grad_output参数即t.autograd.backward中的grad_variables
  • 如果某一个输入不需要求导,直接返回None
  • 反向传播可能需要利用前向传播的某些中间结果,在前向传播过程中,需要保存中间结果,否则前向传播结束后这些对象即被释放

使用Function.apply(variable)即可调用实现的Function

from torch.autograd import Functionclass MultiplyAdd(Function):@staticmethoddef forward(ctx, w, x, b):print('type in forward', type(x))ctx.save_for_backward()output = w*x+breturn output@staticmethoddef backward(ctx, grad_output):w,x = ctx.saved_variablesprint('type in backward', type(x))grad_w = grad_output * xgrad_x = grad_output * wgrad_b = grad_output * 1return grad_w, grad_x, grad_bx = V(t.ones(1))
w = V(t.rand(1), requires_grad = True)
b = V(t.rand(1), requires_grad = True)
print('forward')
z = MultiplyAdd.apply(w,x,b)
print('backward')
z.backward()
x.grad, w.grad, b.grad

forward函数的输入是tensor,而backward函数的输入是variable,这是为了实现高阶求导,backward函数的输入值是variable,但是在实际使用时autograd.Function会将输入variable提取为tensor,并将计算结果的tensor封装成variable返回,在backward函数中要对variable进行操作,是为了能够计算梯度的梯度。

书评

这本书不适合完全没有基础的人看,更像是介绍如何使用PyTorch框架的一本书,但是各大框架正在飞速发展,这本书用的版本和接口,很多在PyTorch1.0里面甚至0.4里面就已经deprecated(弃用)了。在看过PyTorch的官方Tutorials之后,这本书可以不看的,我看完也没有太大的收获,当然还是有的,最大的收获就是对整个框架的设计逻辑和思路设计有了整体的认识,知识更有体系,想要深入认真玩好这个框架还是看官方的Doc更直接些,只不过作为第一个入门框架直接上官方Doc可能难度较大。(其实也还好,理解起来也没有太大问题,系统学一遍只是让自己更踏实)

这篇关于深度学习小笔记05-扩展autograd-摘抄自《深度学习框架PyTorch:入门与实践》陈云-附个人书评的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101900

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre