机器学习 | 基于wine数据集的KMeans聚类和PCA降维案例

2024-08-24 07:04

本文主要是介绍机器学习 | 基于wine数据集的KMeans聚类和PCA降维案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KMeans聚类:K均值聚类是一种无监督的学习算法,它试图根据数据的相似性对数据进行聚类。无监督学习意味着不需要预测结果,算法只是试图在数据中找到模式。在k均值聚类中,我们指定希望将数据分组到的聚类数。该算法将每个观察随机分配到一个集合,并找到每个集合的质心。然后,该算法通过两个步骤进行迭代:将数据点重新分配到质心最近的聚类。计算每个簇的新质心。重复这两个步骤,直到集群内的变化不能进一步减少。聚类内偏差计算为数据点与其各自聚类质心之间的欧几里得距离之和。

在本文中,我们将对葡萄酒数据集进行聚类,并在使用PCA进行降维后对其进行可视化。

导入所需库

我们将首先导入一些有用的Python库,如Pandas,Seaborn,Matplotlib和SKlearn,以执行复杂的计算任务。

import pandas as pd
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_wine
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

导入数据集

这些数据是对生长在意大利同一地区但来自三个不同品种的葡萄酒进行化学分析的结果。分析确定了三种葡萄酒中每种葡萄酒中13种成分的含量。

df = load_wine(as_frame=True)
df = df.frame
df.head()

输出

在这里插入图片描述

因为我们在这里做的是无监督学习。因此,我们从数据集中删除目标Customer_Segment列。

df.drop('target', axis =1, inplace=True)# Check the data informations
df.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):#   Column                        Non-Null Count  Dtype  
---  ------                        --------------  -----  0   alcohol                       178 non-null    float641   malic_acid                    178 non-null    float642   ash                           178 non-null    float643   alcalinity_of_ash             178 non-null    float644   magnesium                     178 non-null    float645   total_phenols                 178 non-null    float646   flavanoids                    178 non-null    float647   nonflavanoid_phenols          178 non-null    float648   proanthocyanins               178 non-null    float649   color_intensity               178 non-null    float6410  hue                           178 non-null    float6411  od280/od315_of_diluted_wines  178 non-null    float6412  proline                       178 non-null    float64
dtypes: float64(13)
memory usage: 18.2 KB

数据标准化

scaler =StandardScaler()features =scaler.fit(df)
features =features.transform(df)# Convert to pandas Dataframe
scaled_df =pd.DataFrame(features,columns=df.columns)
# Print the scaled data
scaled_df.head(2)

输出

在这里插入图片描述
一般来说,K-Means需要未标记的数据才能运行。
因此,使用没有标签的数据来执行K-means聚类。

X=scaled_df.values

肘部方法用于确定聚类的数量

wcss = {} 
for i in range(1, 11): kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)kmeans.fit(X) wcss[i] = kmeans.inertia_plt.plot(wcss.keys(), wcss.values(), 'gs-')
plt.xlabel("Values of 'k'")
plt.ylabel('WCSS')
plt.show()

在这里插入图片描述
从上图中我们可以看到,在k=3时,它像一个肘部一样转动。因此,我们可以说给定数据集的正确聚类数是3。

KMeans聚类

让我们对n_clusters=3执行KMeans聚类。

kmeans=KMeans(n_clusters=3)
kmeans.fit(X)

各个聚类中心坐标:

kmeans.cluster_centers_

输出

array([[ 0.16490746,  0.87154706,  0.18689833,  0.52436746, -0.07547277,-0.97933029, -1.21524764,  0.72606354, -0.77970639,  0.94153874,-1.16478865, -1.29241163, -0.40708796],[-0.92607185, -0.39404154, -0.49451676,  0.17060184, -0.49171185,-0.07598265,  0.02081257, -0.03353357,  0.0582655 , -0.90191402,0.46180361,  0.27076419, -0.75384618],[ 0.83523208, -0.30380968,  0.36470604, -0.61019129,  0.5775868 ,0.88523736,  0.97781956, -0.56208965,  0.58028658,  0.17106348,0.47398365,  0.77924711,  1.12518529]])

labels_每个样本所属的聚类的索引。

kmeans.labels_

输出

array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0])

应用PCA降维

主成分分析是一种将高维数据转换为低维数据,同时保留尽可能多的信息的技术。

  • 它用于解释和可视化数据。
  • 变量的数量减少,这简化了进一步的分析。

然后,我们可以查看PCA分量,即特征空间中的主轴,它们表示数据集中最大方差的方向。这些分量按explained_variance_排序。
使用主成分分析(PCA)将数据集从15个特征最小化为2个特征。

pca=PCA(n_components=2)reduced_X=pd.DataFrame(data=pca.fit_transform(X),columns=['PCA1','PCA2'])#Reduced Features
reduced_X.head()

输出

在这里插入图片描述
使用PCA减少聚类中心

centers=pca.transform(kmeans.cluster_centers_)# reduced centers
centers

输出

array([[-2.72003575, -1.12565126],[-0.03695661,  1.77223945],[ 2.2761936 , -0.93205403]])

绘制基于PCA 1和PCA 2的聚类图


plt.figure(figsize=(7,5))# Scatter plot
plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'],c=kmeans.labels_)
plt.scatter(centers[:,0],centers[:,1],marker='x',s=100,c='red')
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.title('Wine Cluster')
plt.tight_layout()

在这里插入图片描述

PCA 1和PCA 2对聚类的影响

如果我们真的想减少数据集的大小,主成分的最佳数量要比原始数据集中的变量数量少得多。

pca.components_

输出

array([[ 0.1443294 , -0.24518758, -0.00205106, -0.23932041,  0.14199204,0.39466085,  0.4229343 , -0.2985331 ,  0.31342949, -0.0886167 ,0.29671456,  0.37616741,  0.28675223],[-0.48365155, -0.22493093, -0.31606881,  0.0105905 , -0.299634  ,-0.06503951,  0.00335981, -0.02877949, -0.03930172, -0.52999567,0.27923515,  0.16449619, -0.36490283]])

基于PCA1-2特征的热力图

component_df=pd.DataFrame(pca.components_,index=['PCA1',"PCA2"],columns=df.columns)
# Heat map
sns.heatmap(component_df)
plt.show()

在这里插入图片描述

这篇关于机器学习 | 基于wine数据集的KMeans聚类和PCA降维案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101787

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读