Pytorch:复写Dataset函数详解,以及Dataloader如何调用

2024-08-24 05:36

本文主要是介绍Pytorch:复写Dataset函数详解,以及Dataloader如何调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 PyTorch 中,DatasetDataLoader 是数据加载和处理的重要组件。下面详细介绍 Dataset 类的作用及其 __len__()__getitem__() 方法,以及它们如何与 DataLoader 协作,包括数据打乱(shuffle)和批处理(batching)等功能。

Dataset

Dataset 是一个抽象基类,用于表示一个数据集。你需要继承这个基类并实现以下两个方法:

1. __len__()

  • 作用: 返回数据集中样本的总数量。

  • 返回值: 一个整数,表示数据集中样本的数量。

  • 用例: 当你需要知道数据集的大小时,例如在创建 DataLoader 对象时,DataLoader 需要知道数据集中有多少样本才能正确地进行批处理和打乱操作。

这一步确定你取数据的范围,如果你想一次取两个数据,需要在__len__()里面控制索引的长度

class MyDataset(Dataset):def __init__(self, data):self.data = datadef __len__(self):return len(self.data)

2. __getitem__(index)

  • 作用: 根据给定的索引返回数据集中的一个样本。

  • 参数: index,一个整数,表示要获取的样本的索引。

  • 返回值: 返回一个样本的数据(和可能的标签),这可以是任何类型,例如一个图像和其标签、一个文本片段等等。

这里其实可操作性很大,比如你想每次dataloader得到的batch里面包含图片的路径,那么在这里return。

class MyDataset(Dataset):def __init__(self, data):self.data = datadef __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index]

DataLoader

DataLoader 是用于批量加载数据的工具,它接受一个 Dataset 对象并提供了以下功能:

1. 批处理(Batching)

  • 作用: 将数据集分成小批量,每次从数据集中取出一个批次的数据进行训练或评估。

  • 实现: DataLoader 根据 batch_size 参数将数据分批,每个批次包含 batch_size 个样本。

dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

2. 数据打乱(Shuffling)

  • 作用: 在每个 epoch 开始时打乱数据的顺序,有助于模型更好地泛化。

  • 实现: 如果 shuffle=TrueDataLoader 会在每个 epoch 开始时创建一个打乱的索引列表,然后按这些索引顺序提取样本。这里的打乱索引范围就是从_len_函数获取的

过程:

  1. 创建一个索引列表 [0, 1, 2, ..., len(dataset) - 1]
  2. 如果 shuffle=True,打乱这个索引列表。
  3. 使用打乱后的索引列表来从数据集中提取样本。
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

3. 并行加载(Multi-threaded Loading)

  • 作用: 使用多个子进程并行加载数据,减少数据预处理和加载的时间。

  • 参数: num_workers 指定用于数据加载的子进程数量。

  • 实现: DataLoader 会启动 num_workers 个子进程来调用 Dataset__getitem__() 方法并加载数据。

dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

总结

  1. Dataset:

    • __len__(): 返回数据集的总样本数。DataLoader 使用这个方法来确定数据的总量,以便进行正确的批处理和打乱。
    • __getitem__(index): 根据索引返回单个数据样本。DataLoader 会调用这个方法来获取每个批次的数据样本。
  2. DataLoader:

    • 负责将数据分批、打乱数据、并行加载等任务。
    • 使用 Dataset__len__() 来了解数据集的大小,并使用 __getitem__() 来获取每个样本。

通过这种方式,Dataset 提供了数据访问的接口,而 DataLoader 管理数据的加载、打乱和批处理等高级功能。

这篇关于Pytorch:复写Dataset函数详解,以及Dataloader如何调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101593

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash