hadoop入门--使用MapReduce统计每个航班班次

2024-08-24 02:58

本文主要是介绍hadoop入门--使用MapReduce统计每个航班班次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例基于hadoop 2.73,伪分布式集群

一,创建一个MapReduce应用

MapReduce应用结构如图:
这里写图片描述

1、引入maven依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.hadoop</groupId><artifactId>beginner</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><name>beginner</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-core</artifactId><version>1.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.3</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.3</version></dependency><dependency><groupId>au.com.bytecode</groupId><artifactId>opencsv</artifactId><version>2.4</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-shade-plugin</artifactId><version>1.2.1</version><executions><execution><phase>package</phase><goals><goal>shade</goal></goals><configuration><transformers><transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"><mainClass>com.hadoop.FlightsByCarrier</mainClass></transformer></transformers></configuration></execution></executions></plugin></plugins></build></project>

2、MapReduce Driver代码

是用户与hadoop集群交互的客户端,在此配置MapReduce Job。

package com.hadoop;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;public class FlightsByCarrier {public static void main(String[] args)  throws Exception {Job job = new Job();job.setJarByClass(FlightsByCarrier.class);job.setJobName("FlightsByCarrier");TextInputFormat.addInputPath(job, new Path(args[0]));job.setInputFormatClass(TextInputFormat.class);job.setMapperClass(FlightsByCarrierMapper.class);job.setReducerClass(FlightsByCarrierReducer.class);TextOutputFormat.setOutputPath(job, new Path(args[1]));job.setOutputFormatClass(TextOutputFormat.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.waitForCompletion(true);}
}

3、MapReduce Mapper代码

package com.hadoop;import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlightsByCarrierMapper extends Mapper<LongWritable, Text, Text, IntWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {if (key.get() > 0) {String[] lines = new CSVParser().parseLine(value.toString());context.write(new Text(lines[8]), new IntWritable(1));}}
}

4、MapReduce Reducer代码

package com.hadoop;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlightsByCarrierReducer extends Reducer<Text, IntWritable, Text, IntWritable>{@Overrideprotected void reduce(Text token, Iterable<IntWritable> counts,Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable count : counts) {sum+= count.get();}context.write(token, new IntWritable(sum));}
}

5、利用idea maven打jar包

jar包名称为:beginner-1.0-SNAPSHOT.jar

6、上传到linux虚拟机

代码是在window系统中的idea编写完成,需要上传到Linux虚拟机。

7、运行MapReduce Driver,处理航班数据

hadoop jar beginner-1.0-SNAPSHOT.jar  /user/root/2008.csv /user/root/output/flightsCount

运行情况如下:

18/01/09 02:29:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
18/01/09 02:29:52 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
18/01/09 02:29:53 INFO input.FileInputFormat: Total input paths to process : 1
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: number of splits:6
18/01/09 02:29:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1515491426576_0002
18/01/09 02:29:54 INFO impl.YarnClientImpl: Submitted application application_1515491426576_0002
18/01/09 02:29:55 INFO mapreduce.Job: The url to track the job: http://slave1:8088/proxy/application_1515491426576_0002/
18/01/09 02:29:55 INFO mapreduce.Job: Running job: job_1515491426576_0002
18/01/09 02:30:01 INFO mapreduce.Job: Job job_1515491426576_0002 running in uber mode : false
18/01/09 02:30:01 INFO mapreduce.Job:  map 0% reduce 0%
18/01/09 02:30:17 INFO mapreduce.Job:  map 39% reduce 0%
18/01/09 02:30:19 INFO mapreduce.Job:  map 52% reduce 0%
18/01/09 02:30:21 INFO mapreduce.Job:  map 86% reduce 0%
18/01/09 02:30:22 INFO mapreduce.Job:  map 100% reduce 0%
18/01/09 02:30:31 INFO mapreduce.Job:  map 100% reduce 100%
18/01/09 02:30:32 INFO mapreduce.Job: Job job_1515491426576_0002 completed successfully
18/01/09 02:30:32 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=63087558FILE: Number of bytes written=127016400FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=689434454HDFS: Number of bytes written=197HDFS: Number of read operations=21HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=6Launched reduce tasks=1Data-local map tasks=6Total time spent by all maps in occupied slots (ms)=110470Total time spent by all reduces in occupied slots (ms)=7315Total time spent by all map tasks (ms)=110470Total time spent by all reduce tasks (ms)=7315Total vcore-milliseconds taken by all map tasks=110470Total vcore-milliseconds taken by all reduce tasks=7315Total megabyte-milliseconds taken by all map tasks=113121280Total megabyte-milliseconds taken by all reduce tasks=7490560Map-Reduce FrameworkMap input records=7009729Map output records=7009728Map output bytes=49068096Map output materialized bytes=63087588Input split bytes=630Combine input records=0Combine output records=0Reduce input groups=20Reduce shuffle bytes=63087588Reduce input records=7009728Reduce output records=20Spilled Records=14019456Shuffled Maps =6Failed Shuffles=0Merged Map outputs=6GC time elapsed (ms)=6818CPU time spent (ms)=38010Physical memory (bytes) snapshot=1807056896Virtual memory (bytes) snapshot=13627478016Total committed heap usage (bytes)=1370488832Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=689433824File Output Format Counters Bytes Written=197

8、查看航班数据

hadoop fs -cat /user/root/output/flightsCount/part-r-00000

结果如下:

9E  262208
AA  604885
AQ  7800
AS  151102
B6  196091
CO  298455
DL  451931
EV  280575
F9  95762
FL  261684
HA  61826
MQ  490693
NW  347652
OH  197607
OO  567159
UA  449515
US  453589
WN  1201754
XE  374510
YV  254930

参考资料:
1、《Hadoop For Dummies》

这篇关于hadoop入门--使用MapReduce统计每个航班班次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101251

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do