自定义通信协议设计基础

2024-08-24 01:32

本文主要是介绍自定义通信协议设计基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文转自:http://www.360doc.com/content/14/0915/11/1073512_409611008.shtml

  对于很多设备之间的通信,经常需要自己设计一套通信协议。当然此处的通信协议一般都是建立在TCPIP协议等协议基础之上的协议,也就是在已有协议的基础之上,在定义一套协议。例如:有一套检测降雨量的设备(一般为简单的嵌入式设备)需要把采集到的的数据上报给中心服务器(一般为一台性能特别好的计算机)。就需要一套通信协议。以保证,嵌入式设备上发的数据,可以被中心服务器正确的理解和处理。再例如:在桥梁检测的项目中,会检测很多桥梁的数据,应力,索力,温度等,这些检测设备一般都是由简单的传感器组成的嵌入式设备 ,需要通过各种方式把采集到的的数据上报给中心服务器,中心服务器经过分析处理后,再进一步判断桥梁的各种状态。这些都涉及到自定义通信协议。

但这些自定义通信协议如何设计?有设计到那些方面?

协议的设计,是为了保证双方能够正常的通信,由于上位设备和下位设备一般是不同的设备,处理能力有很大差异,这些都是设计协议必须考虑的问题。

  一套完整的协议,通常包含很多命令,每一个命令都会规定一个完整的命令(也就是一个完整的数据帧)包含哪些部分,一般包含以下几部分:

1、数据帧的组成的形式

一般形式有字节流(有的地方也叫做二进制协议)和字符流。字节流一般会规定每一个字节表示的含义,而字符流由于都是可见的字符,一般会规定,字符的含义。

2、数据帧头和尾

数据帧头和尾其实是为了解析数据而设计的,主要是为了获取一个完整的帧。由于网络的不确定性,无法保证一条完整的数据帧的一次性就发送给对方。一般选择用很少出现的字节或者字符作为数据帧头和尾。

例如我曾经解析过得MODE 04 PROTOCOL的一套协议,就是以0x03,0x14开头的,由于MODE 04 PROTOCOL是字节流协议,因此规定了命令的开头两个字节是0x03,0x14,还曾经解析过字符流的协议,命令是以##开头数据帧尾有时会有,有时没有,例如MODE 04 PROTOCOL就没有协议尾,因为它有两个字节表示本条数据帧的长度,所以没必要规定数据帧尾。相反,如果无法判断一条命令的长度,就会规定数据帧如何结束。如果数据帧长度都是一样的,也没有必要规定,但实际中很少遇到数据帧长度是固定的情况。

3、数据帧的验证部分

对于字节流的协议,一般会规定验证数据帧的验证部分,例如MODE 04 PROTOCOL就规定了数据帧最后两个字节是crc验证部分。

对于字符流的也可以加验证字段,但因为每一部分都都是可视的字符,也可以不加。

4、转义字符

再少出现的字符由于数据帧内容的不确定性,也有可能在数据帧内部出现,例如:MODE 04 PROTOCOL协议当数据帧内部出现了0x03,0x14,也就是数据帧规定的开始部分,就必须转义,否则就会解析出错。导致一个数据帧变成两部分不完整无法理解的数据帧。

5、命令字及其他

命令字就是标示此数据帧,需要完成的命令,例如:读取时间命令数据帧,就有一部分标示此数据帧是读取时间,设置时间命令数据帧就有一部分标示此数据帧是用来设置时间的,当然会有命令内容例如把时间调整到多少。


6、心跳包

心跳包作为一条很特殊的数据帧,作用其实和人的心跳类似。每隔一段时间,就会发送一条很特殊的数据帧心跳包。作用就是表明此设备还在工作。

例如QQ的在上状态应该就是通过类似心跳包的设计来完成的。但在无线领域还有其他作用,避免已经建立的链接断开。尤其数据是通过GPRS发送时,如果长时间不发送数据,网络运营商就会回收链接,下次发送数据时,就必须重新建立链接,这对于需要永远在线的设备或者是需要随时唤醒的设备来说,显然是不行的。

对比:

字节流协议难度显然比字符流大很多,解析过程也更复杂,如果没有协议文档,几乎不能解析,因为收到的就是一串毫无意思的数字,一个字节处理错误就完全可能导致整条数据解析错误,此外字节流还需要规定大端模式和小端模式等。当然好处就是,传输同样的信息,数据量明显少很多。

字符流就简单很多,解析的过程可能就是一个正则表达式。


这篇关于自定义通信协议设计基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101066

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We