大数据技术之_07_Hadoop学习_HDFS_HA(高可用)_HA概述+HDFS-HA工作机制+HDFS-HA集群配置+YARN-HA配置+HDFS Federation(联邦) 架构设计

本文主要是介绍大数据技术之_07_Hadoop学习_HDFS_HA(高可用)_HA概述+HDFS-HA工作机制+HDFS-HA集群配置+YARN-HA配置+HDFS Federation(联邦) 架构设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据技术之_07_Hadoop学习_HDFS_HA(高可用)

    • 第8章 HDFS HA 高可用
      • 8.1 HA概述
      • 8.2 HDFS-HA工作机制
        • 8.2.1 HDFS-HA工作要点
        • 8.2.2 HDFS-HA手动故障转移工作机制
        • 8.2.3 HDFS-HA自动故障转移工作机制
      • 8.3 HDFS-HA集群配置
        • 8.3.1 环境准备
        • 8.3.2 规划集群
        • 8.3.3 配置Zookeeper集群
        • 8.3.4 配置HDFS-HA集群
        • 8.3.5 启动HDFS-HA集群
        • 8.3.6 配置HDFS-HA自动故障转移
      • 8.4 YARN-HA配置
        • 8.4.1 YARN-HA工作机制
        • 8.4.2 配置YARN-HA集群
      • 8.5 HDFS Federation(联邦) 架构设计

第8章 HDFS HA 高可用

8.1 HA概述

  • 1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
  • 2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
  • 3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
  • 4)NameNode主要在以下两个方面影响HDFS集群:
    • NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启。
    • NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用。
  • HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

8.2 HDFS-HA工作机制

  通过双NameNode消除单点故障。

8.2.1 HDFS-HA工作要点
  • 1、元数据管理方式需要改变
    内存中各自保存一份元数据;
    Edits日志只有Active状态的NameNode节点可以做写操作;
    两个NameNode都可以读取Edits;
    共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现)。
  • 2、需要一个状态管理功能模块
    实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split(脑裂)现象的发生。
  • 3、必须保证两个NameNode之间能够ssh无密码登录。
  • 4、隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务。
8.2.2 HDFS-HA手动故障转移工作机制

8.2.3 HDFS-HA自动故障转移工作机制

  • 前面学习了使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件(进程):ZooKeeper和ZKFailoverController(ZKFC)进程,如下图所示。
  • ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
    • 1)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
    • 2)现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
  • ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
    • 1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
    • 2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
    • 3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。

8.3 HDFS-HA集群配置

8.3.1 环境准备

1、修改ip
2、修改主机名及主机名和ip地址的映射
3、关闭防火墙
4、ssh免密登录
5、安装JDK,配置环境变量等

8.3.2 规划集群

8.3.3 配置Zookeeper集群

1、集群规划
  在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
2、解压安装
(1)解压Zookeeper安装包到/opt/module/目录下

[atguigu@hadoop102 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

(2)同步/opt/module/zookeeper-3.4.10/目录内容到hadoop103、hadoop104

[atguigu@hadoop102 module]$ xsync zookeeper-3.4.10/

3、配置服务器编号
(1)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData

[atguigu@hadoop102 zookeeper-3.4.10]$ mkdir -p zkData

(2)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件

[atguigu@hadoop102 zkData]$ touch myid

添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码。
(3)编辑myid文件

[atguigu@hadoop102 zkData]$ vim myid

在文件中添加与server对应的编号:

2

(4)拷贝配置好的zookeeper到其他机器上

[atguigu@hadoop102 zkData]$ xsync myid

并分别在hadoop102、hadoop103上修改myid文件中内容为3、4
4、配置zoo.cfg文件
(1)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg

[atguigu@hadoop102 conf]$ mv zoo_sample.cfg zoo.cfg

(2)打开zoo.cfg文件

[atguigu@hadoop102 conf]$ vim zoo.cfg

修改数据存储路径配置

dataDir=/opt/module/zookeeper-3.4.10/zkData

增加如下配置

#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

(3)同步zoo.cfg配置文件

[atguigu@hadoop102 conf]$ xsync zoo.cfg

(4)配置参数解读

server.A=B:C:D。

A是一个数字,表示这个是第几号服务器;
  集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
B是这个服务器的ip地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

4、集群操作
(1)分别启动Zookeeper

[atguigu@hadoop102 zookeeper-3.4.10]$ bin/zkServer.sh start
[atguigu@hadoop103 zookeeper-3.4.10]$ bin/zkServer.sh start
[atguigu@hadoop104 zookeeper-3.4.10]$ bin/zkServer.sh start

(2)查看状态

[atguigu@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[atguigu@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[atguigu@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
8.3.4 配置HDFS-HA集群

1、官方地址:http://hadoop.apache.org/
2、在opt目录下创建一个HA文件夹

mkdir HA

3、将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下

cp -r hadoop-2.7.2/ /opt/HA/

4、配置hadoop-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_144

5、配置core-site.xml

<configuration><!-- Hadoop FS客户端在没有给出时使用的默认路径前缀 --><property><name>fs.defaultFS</name><value>hdfs://mycluster</value></property><!-- 指定Hadoop运行时产生文件的存储目录 --><property><name>hadoop.tmp.dir</name><value>/opt/module/HA/hadoop-2.7.2/data/tmp

这篇关于大数据技术之_07_Hadoop学习_HDFS_HA(高可用)_HA概述+HDFS-HA工作机制+HDFS-HA集群配置+YARN-HA配置+HDFS Federation(联邦) 架构设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100806

相关文章

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri