07_LFM--梯度下降法--实现基于模型的协同过滤

2024-08-23 23:18

本文主要是介绍07_LFM--梯度下降法--实现基于模型的协同过滤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

07_LFM--梯度下降法--实现基于模型的协同过滤

    • LFM--梯度下降法--实现基于模型的协同过滤
      • 0.引入依赖
      • 1.数据准备
      • 2.算法的实现
      • 3.测试

LFM–梯度下降法–实现基于模型的协同过滤

0.引入依赖

import numpy as np # 数值计算、矩阵运算、向量运算
import pandas as pd # 数值分析、科学计算

1.数据准备

# 定义评分矩阵 R
R = np.array([[4, 0, 2, 0, 1],[0, 2, 3, 0, 0],[1, 0, 2, 4, 0],[5, 0, 0, 3, 1],[0, 0, 1, 5, 1],[0, 3, 2, 4, 1],])
# R.shape # (6, 5)
# R.shape[0] # 6
# R.shape[1] # 5
# len(R) # 6
# len(R[0]) # 5

2.算法的实现

"""
@输入参数:
R:M*N 的评分矩阵
K:隐特征向量维度
max_iter: 最大迭代次数
alpha:步长
lamda:正则化系数@输出:
分解之后的 P,Q
P:初始化用户特征矩阵 M*K
Q:初始化物品特征矩阵 N*K,Q 的转置是 K*N
"""# 给定超参数
K = 5
max_iter = 5000
alpha = 0.0002
lamda = 0.004# 核心算法
def LMF_grad_desc(R, K=2, max_iter=1000, alpha=0.0001, lamda=0.002):# 定义基本维度参数M = len(R)N = len(R[0])# P、Q 的初始值随机生成P = np.random.rand(M, K)Q = np.random.rand(N, K)Q = Q.T# 开始迭代for steps in range(max_iter):# 对所有的用户 u,物品 i 做遍历,然后对对应的特征向量 Pu、Qi 做梯度下降for u in range(M):for i in range(N):# 对于每一个大于 0 的评分,求出预测评分误差 e_uiif R[u][i] > 0:e_ui = np.dot(P[u,:], Q[:,i]) - R[u][i]# 代入公式,按照梯度下降算法更新当前的 Pu、Qifor k in range(K):P[u][k] = P[u][k] - alpha * (2 * e_ui * Q[k][i] + 2 * lamda * P[u][k])Q[k][i] = Q[k][i] - alpha * (2 * e_ui * P[u][k] + 2 * lamda * Q[k][i])# u,i 遍历完成,所有的特征向量更新完成,可以得到 P、Q,可以计算预测评分矩阵predR = np.dot(P, Q)# 计算当前损失函数(所有的预测误差平方后求和)cost = 0for u in range(M):for i in range(N):# 对于每一个大于 0 的评分,求出预测评分误差后,将所有的预测误差平方后求和if R[u][i] > 0:cost += (np.dot(P[u,:], Q[:,i]) - R[u][i]) ** 2# 加上正则化项for k in range(K):cost += lamda * (P[u][k] ** 2 + Q[k][i] ** 2)if cost < 0.0001:# 当前损失函数小于给定的值,退出迭代breakreturn P, Q.T, cost

3.测试

P, Q, cost = LMF_grad_desc(R, K, max_iter, alpha, lamda)print(P)
print(Q)
print(cost)predR = P.dot(Q.T)print(R)
predR

当 K = 2 时,输出结果如下:

[[1.44372596 1.29573962][1.82185633 0.0158696 ][1.5331521  0.16327061][0.31364667 1.9008297 ][1.03622742 2.03603634][1.34107967 0.93406796]]
[[ 0.4501051   2.55477489][ 1.18869845  1.20910294][ 1.54255106 -0.23514326][ 2.33556583  1.21026575][ 0.43753164  0.34555928]]
1.0432768290554293
[[4 0 2 0 1][0 2 3 0 0][1 0 2 4 0][5 0 0 3 1][0 0 1 5 1][0 3 2 4 1]]array([[3.96015147, 3.2828374 , 1.92233657, 4.9401063 , 1.07943065],[0.86057008, 2.18482578, 2.80657478, 4.27427181, 0.80260368],[1.10719924, 2.0198665 , 2.32657341, 3.77837848, 0.72722223],[4.99736596, 2.6711301 , 0.03684871, 3.03305153, 0.79407969],[5.66802576, 3.69353946, 1.11967348, 4.8843224 , 1.15695354],[2.98996017, 2.72352365, 1.84904408, 4.2626503 , 0.90954065]])

当 K = 5 时,输出结果如下:


[[ 0.77991893  0.95803701  0.75945903  0.74581653  0.58070622][ 1.51777367  0.66949331  0.89818609  0.23566984  0.56583223][ 0.03567022  0.58391558  1.42477223  0.87262652 -0.52553017][ 1.24101793  0.86257736  0.73772417  0.18181617  0.97014545][ 0.58789616  0.53522492  0.48830352  1.80622908  0.81202167][ 1.08640318  0.87660384  0.68935314  0.84506882  0.92284071]]
[[ 1.64469428  1.10535565  0.56686066  0.38656745  1.56519511][ 0.61680687  0.57188343  0.49729111  0.9623455   0.43969708][ 0.99260822  0.6007452   1.14768173 -0.16998497 -0.14094479][ 0.47070988  0.85347655  1.43546859  1.8185161   0.29759968][ 0.07923314  0.49412497  0.53285806  0.23753882 -0.05146021]]
0.7478305665280703
[[4 0 2 0 1][0 2 3 0 0][1 0 2 4 0][5 0 0 3 1][0 0 1 5 1][0 3 2 4 1]]array([[3.9694342 , 2.37968507, 2.01268221, 3.8040546 , 1.08714641],[4.72218838, 2.2412959 , 2.81976984, 3.17210672, 0.95653992],[1.02652007, 1.67315396, 1.94711343, 3.99085212, 1.28488146],[5.0014878 , 2.22716585, 2.42906339, 2.99867943, 0.91091753],[3.80452512, 3.00679363, 1.04401937, 4.96078887, 0.95850804],[4.91762916, 2.73324389, 2.1224277 , 4.06049468, 1.03980543]])

这篇关于07_LFM--梯度下降法--实现基于模型的协同过滤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100771

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到