基于预训练模型,进行氨基酸序列编码,用于深度学习模型构建

本文主要是介绍基于预训练模型,进行氨基酸序列编码,用于深度学习模型构建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本团队提供生物医学领域专业的AI(机器学习、深度学习)技术支持服务。如果您有需求,请扫描文末二维码关注我们。

在这里插入图片描述


在对氨基酸序列数据进行深度学习模型构建时,首先需要将字符形式的序列数据进行编码操作。最简单的当然是One-hot编码,但会引入稀疏性问题。这里提供一种基于预训练模型的编码方法,代码如下:

import os 
import pandas as pd 
import numpy as np 
from sentence_transformers import SentenceTransformer
import warningswarnings.filterwarnings('ignore')# 定义读取FASTA格式的氨基酸序列文件
def read_fasta(file_path):with open(file_path, 'r') as file:sequences = []sequence_names = []current_sequence = []for line in file:line = line.strip()if line.startswith('>'):if current_sequence:sequences.append(''.join(current_sequence))current_sequence = []sequence_names.append(line[1:])else:current_sequence.append(line)if current_sequence:sequences.append(''.join(current_sequence))# 返回两个list# 第一个为序列名,第二个为序列return sequence_names, sequences# 将自动下载预训练模型,如果失败,需要手动从网站下载。
# 网站地址:https://huggingface.co/monsoon-nlp/protein-matryoshka-embeddings
model = SentenceTransformer('monsoon-nlp/protein-matryoshka-embeddings')# 创建结果文件
outdir = 'embedding_results'
os.makedirs(outdir, exist_ok=True)
os.makedirs(f"{outdir}/SingleSeqEmbedding", exist_ok=True)# 读取氨基酸序列
sequence_names, sequences = read_fasta('proteinSquence-zheng.txt')
print(f"共读入了 {len(sequence_names)} 条氨基酸序列")# 将读入的序列转为CSV格式,并进行保存
df = pd.DataFrame({'seq_name': sequence_names,'sequence': sequences})
df.to_csv(f"{outdir}/sequences.csv", index=False)# 每条序列单独编码
for idx, sequence in enumerate(sequences):embedding = model.encode(sequence)np.save(f'{outdir}/SingleSeqEmbedding/embedding_{idx}.npy', embedding)# 所有序列编码为一个矩阵
embeddings = model.encode(sequences)
np.save(f'{outdir}/embeddings.npy', embeddings)print('编码后的序列维度为: ', embeddings.shape)

在这里插入图片描述

这篇关于基于预训练模型,进行氨基酸序列编码,用于深度学习模型构建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100688

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令