书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系

2024-08-23 20:52

本文主要是介绍书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

书生大模型全链路开源体系

    • 简介
      • 官网:
      • github:
      • InternLM2.5 系列模型在本仓库正式发布,具有如下特性:
    • 更新
    • 模型说明:
    • 性能
    • 智能体
    • 微调&训练
    • 评测
      • 标准客观评测
      • 长文评估(大海捞针)
      • 数据污染评估
      • 智能体评估
      • 主观评估
    • 视频课程学习笔记
      • 三个开源工具
      • 模型预训练工具internEvo
      • 模型微调工具XTuner
      • 模型评测工具OpenCompass
      • 模型部署工具LMDeploy
      • 智能体Lagent
      • 开源搜索工具mindsearch
    • 免费开源可商用的企业级知识构建工具——茴香豆

简介

官网:

https://internlm.intern-ai.org.cn/

github:

https://github.com/InternLM/InternLM

InternLM2.5 系列模型在本仓库正式发布,具有如下特性:

卓越的推理性能:在数学推理方面取得了同量级模型最优精度,超越了 Llama3 和 Gemma2-9B。
有效支持百万字超长上下文:模型在 1 百万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 LMDeploy 尝试百万字超长上下文推理。更多内容和文档对话 demo 请查看这里。
工具调用能力整体升级:InternLM2.5 支持从上百个网页搜集有效信息进行分析推理,相关实现将于近期开源到 Lagent。InternLM2.5 具有更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多样例。

更新

[2024.07.19] 我们发布了 1.8B、7B 和 20B 大小的 InternLM2-Reward 系列奖励模型。可以在下方的 模型库 进行下载,或者在 model cards 中了解更多细节。

[2024.06.30] 我们发布了 InternLM2.5-7B、InternLM2.5-7B-Chat 和 InternLM2.5-7B-Chat-1M。可以在下方的 模型库 进行下载,或者在 model cards 中了解更多细节。

[2024.03.26] 我们发布了 InternLM2 的技术报告。 可以点击 arXiv链接 来了解更多细节。

[2024.01.31] 我们发布了 InternLM2-1.8B,以及相关的对话模型。该模型在保持领先性能的情况下,提供了更低廉的部署方案。

[2024.01.23] 我们发布了 InternLM2-Math-7B 和 InternLM2-Math-20B 以及相关的对话模型。InternLM-Math以较小的尺寸超过了ChatGPT的表现。可以点击InternLM-Math进行下载,并了解详情。

[2024.01.17] 我们发布了 InternLM2-7B 和 InternLM2-20B 以及相关的对话模型,InternLM2 在数理、代码、对话、创作等各方面能力都获得了长足进步,综合性能达到开源模型的领先水平。可以点击下面的模型库进行下载或者查看模型文档来了解更多细节.

[2023.12.13] 我们更新了 InternLM-7B-Chat 和 InternLM-20B-Chat 模型权重。通过改进微调数据和训练策略,新版对话模型生成的回复质量更高、语言风格更加多元。

[2023.09.20] InternLM-20B 已发布,包括基础版和对话版。

模型说明:

目前 InternLM 2.5 系列只发布了 7B 大小的模型,我们接下来将开源 1.8B 和 20B 的版本。7B 为轻量级的研究和应用提供了一个轻便但性能不俗的模型,20B 模型的综合性能更为强劲,可以有效支持更加复杂的实用场景。每个规格不同模型关系如下所示:

InternLM2.5:经历了大规模预训练的基座模型,是我们推荐的在大部分应用中考虑选用的优秀基座。
InternLM2.5-Chat: 对话模型,在 InternLM2.5 基座上经历了有监督微调和 online RLHF。InternLM2.5-Chat 面向对话交互进行了优化,具有较好的指令遵循、共情聊天和调用工具等的能力,是我们推荐直接用于下游应用的模型。
InternLM2.5-Chat-1M: InternLM2.5-Chat-1M 支持一百万字超长上下文,并具有和 InternLM2.5-Chat 相当的综合性能表现。
局限性: 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。

补充说明: 上表中的 HF 表示对应模型为 HuggingFace 平台提供的 transformers 框架格式;Origin 则表示对应模型为我们 InternLM 团队的 InternEvo 框架格式。

性能

我们使用开源评测工具 OpenCompass 在几个重要的基准测试中对 InternLM2.5 进行了评测。部分评测结果如下表所示。欢迎访问 OpenCompass 排行榜 获取更多评测结果。

智能体

InternLM-2.5-Chat 模型有出色的工具调用性能并具有一定的零样本泛化能力。它支持从上百个网页中搜集信息并进行分析。更多样例可以参考 agent 目录.

微调&训练

请参考微调教程尝试续训或微调 InternLM2。

注意: 本项目中的全量训练功能已经迁移到了 InternEvo 以便用户使用。InternEvo 提供了高效的预训练和微调基建用于训练 InternLM 系列模型。

评测

我们使用 OpenCompass 进行模型评估。在 InternLM2.5 中,我们主要标准客观评估、长文评估(大海捞针)、数据污染评估、智能体评估和主观评估。

标准客观评测

请按照 OpenCompass 教程 进行客观评测。我们通常在 Base 模型上使用 ppl 进行多项选择题评测,在 Chat 模型上使用 gen 进行所有问题的答案生成和评测。

长文评估(大海捞针)

有关 大海捞针 评估的教程,请参阅 文档 中的教程。

数据污染评估

要了解更多关于数据污染评估的信息,请查看 污染评估。

智能体评估

要评估大模型的工具利用能力,请使用 T-Eval 进行评测。
对于代码解释器评估,请使用 gsm-8k-agent 提供的配置进行评估。此外,您还需要安装 Lagent。

主观评估

请按照 教程 进行主观评估。

视频课程学习笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三个开源工具

  • Miner U: 数据提取工具
  • Label LLM: 文本标注工具
  • Label U: 图片标注工具

在这里插入图片描述

模型预训练工具internEvo

在这里插入图片描述

模型微调工具XTuner

在这里插入图片描述
在这里插入图片描述

模型评测工具OpenCompass

在这里插入图片描述
在这里插入图片描述

模型部署工具LMDeploy

在这里插入图片描述

智能体Lagent

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

开源搜索工具mindsearch

在这里插入图片描述

免费开源可商用的企业级知识构建工具——茴香豆

俗称豆哥
在这里插入图片描述

这篇关于书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1100464

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red