书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系

2024-08-23 20:52

本文主要是介绍书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

书生大模型全链路开源体系

    • 简介
      • 官网:
      • github:
      • InternLM2.5 系列模型在本仓库正式发布,具有如下特性:
    • 更新
    • 模型说明:
    • 性能
    • 智能体
    • 微调&训练
    • 评测
      • 标准客观评测
      • 长文评估(大海捞针)
      • 数据污染评估
      • 智能体评估
      • 主观评估
    • 视频课程学习笔记
      • 三个开源工具
      • 模型预训练工具internEvo
      • 模型微调工具XTuner
      • 模型评测工具OpenCompass
      • 模型部署工具LMDeploy
      • 智能体Lagent
      • 开源搜索工具mindsearch
    • 免费开源可商用的企业级知识构建工具——茴香豆

简介

官网:

https://internlm.intern-ai.org.cn/

github:

https://github.com/InternLM/InternLM

InternLM2.5 系列模型在本仓库正式发布,具有如下特性:

卓越的推理性能:在数学推理方面取得了同量级模型最优精度,超越了 Llama3 和 Gemma2-9B。
有效支持百万字超长上下文:模型在 1 百万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 LMDeploy 尝试百万字超长上下文推理。更多内容和文档对话 demo 请查看这里。
工具调用能力整体升级:InternLM2.5 支持从上百个网页搜集有效信息进行分析推理,相关实现将于近期开源到 Lagent。InternLM2.5 具有更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多样例。

更新

[2024.07.19] 我们发布了 1.8B、7B 和 20B 大小的 InternLM2-Reward 系列奖励模型。可以在下方的 模型库 进行下载,或者在 model cards 中了解更多细节。

[2024.06.30] 我们发布了 InternLM2.5-7B、InternLM2.5-7B-Chat 和 InternLM2.5-7B-Chat-1M。可以在下方的 模型库 进行下载,或者在 model cards 中了解更多细节。

[2024.03.26] 我们发布了 InternLM2 的技术报告。 可以点击 arXiv链接 来了解更多细节。

[2024.01.31] 我们发布了 InternLM2-1.8B,以及相关的对话模型。该模型在保持领先性能的情况下,提供了更低廉的部署方案。

[2024.01.23] 我们发布了 InternLM2-Math-7B 和 InternLM2-Math-20B 以及相关的对话模型。InternLM-Math以较小的尺寸超过了ChatGPT的表现。可以点击InternLM-Math进行下载,并了解详情。

[2024.01.17] 我们发布了 InternLM2-7B 和 InternLM2-20B 以及相关的对话模型,InternLM2 在数理、代码、对话、创作等各方面能力都获得了长足进步,综合性能达到开源模型的领先水平。可以点击下面的模型库进行下载或者查看模型文档来了解更多细节.

[2023.12.13] 我们更新了 InternLM-7B-Chat 和 InternLM-20B-Chat 模型权重。通过改进微调数据和训练策略,新版对话模型生成的回复质量更高、语言风格更加多元。

[2023.09.20] InternLM-20B 已发布,包括基础版和对话版。

模型说明:

目前 InternLM 2.5 系列只发布了 7B 大小的模型,我们接下来将开源 1.8B 和 20B 的版本。7B 为轻量级的研究和应用提供了一个轻便但性能不俗的模型,20B 模型的综合性能更为强劲,可以有效支持更加复杂的实用场景。每个规格不同模型关系如下所示:

InternLM2.5:经历了大规模预训练的基座模型,是我们推荐的在大部分应用中考虑选用的优秀基座。
InternLM2.5-Chat: 对话模型,在 InternLM2.5 基座上经历了有监督微调和 online RLHF。InternLM2.5-Chat 面向对话交互进行了优化,具有较好的指令遵循、共情聊天和调用工具等的能力,是我们推荐直接用于下游应用的模型。
InternLM2.5-Chat-1M: InternLM2.5-Chat-1M 支持一百万字超长上下文,并具有和 InternLM2.5-Chat 相当的综合性能表现。
局限性: 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。

补充说明: 上表中的 HF 表示对应模型为 HuggingFace 平台提供的 transformers 框架格式;Origin 则表示对应模型为我们 InternLM 团队的 InternEvo 框架格式。

性能

我们使用开源评测工具 OpenCompass 在几个重要的基准测试中对 InternLM2.5 进行了评测。部分评测结果如下表所示。欢迎访问 OpenCompass 排行榜 获取更多评测结果。

智能体

InternLM-2.5-Chat 模型有出色的工具调用性能并具有一定的零样本泛化能力。它支持从上百个网页中搜集信息并进行分析。更多样例可以参考 agent 目录.

微调&训练

请参考微调教程尝试续训或微调 InternLM2。

注意: 本项目中的全量训练功能已经迁移到了 InternEvo 以便用户使用。InternEvo 提供了高效的预训练和微调基建用于训练 InternLM 系列模型。

评测

我们使用 OpenCompass 进行模型评估。在 InternLM2.5 中,我们主要标准客观评估、长文评估(大海捞针)、数据污染评估、智能体评估和主观评估。

标准客观评测

请按照 OpenCompass 教程 进行客观评测。我们通常在 Base 模型上使用 ppl 进行多项选择题评测,在 Chat 模型上使用 gen 进行所有问题的答案生成和评测。

长文评估(大海捞针)

有关 大海捞针 评估的教程,请参阅 文档 中的教程。

数据污染评估

要了解更多关于数据污染评估的信息,请查看 污染评估。

智能体评估

要评估大模型的工具利用能力,请使用 T-Eval 进行评测。
对于代码解释器评估,请使用 gsm-8k-agent 提供的配置进行评估。此外,您还需要安装 Lagent。

主观评估

请按照 教程 进行主观评估。

视频课程学习笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三个开源工具

  • Miner U: 数据提取工具
  • Label LLM: 文本标注工具
  • Label U: 图片标注工具

在这里插入图片描述

模型预训练工具internEvo

在这里插入图片描述

模型微调工具XTuner

在这里插入图片描述
在这里插入图片描述

模型评测工具OpenCompass

在这里插入图片描述
在这里插入图片描述

模型部署工具LMDeploy

在这里插入图片描述

智能体Lagent

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

开源搜索工具mindsearch

在这里插入图片描述

免费开源可商用的企业级知识构建工具——茴香豆

俗称豆哥
在这里插入图片描述

这篇关于书生大模型实战营第三期基础岛第一课——书生大模型全链路开源体系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100464

相关文章

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习