python 实现dijkstra银行家算法

2024-08-23 17:20

本文主要是介绍python 实现dijkstra银行家算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dijkstra银行家算法介绍

Dijkstra的银行家算法是一种用于避免死锁的资源分配算法,由著名计算机科学家艾兹赫尔·戴克斯特拉(Edsger Dijkstra)在1965年提出。该算法通过模拟银行家在向客户贷款时的决策过程,确保系统在资源分配过程中始终处于安全状态。

银行家算法的基本思想

银行家算法的基本思想是通过判断系统是否处于安全状态来决定是否分配资源给进程。系统维护几个关键的数据结构,包括:

可用资源(Available):表示系统中每种资源的可用数量。
最大需求(Max):表示每个进程对每种资源的最大需求量。
已分配资源(Allocation):表示每个进程已经分配到的资源数量。
还需资源(Need):表示每个进程还需要的资源数量,通常通过Max - Allocation计算得出。
算法的执行步骤
初始化:系统初始化这些数据结构,并设置正确的初始值。
进程请求资源:当一个进程请求资源时,系统检查该请求是否小于等于系统当前可用的资源数量。
安全性检查:如果满足进程的资源请求,系统试探性地分配资源给进程,并进行安全性检查。这个检查通过模拟分配资源并判断是否存在一种资源分配序列,使得所有进程都能顺利完成任务。
安全状态:如果存在这样的序列,则系统认为当前状态是安全的,可以分配资源给进程。
不安全状态:如果不存在这样的序列,则系统认为当前状态是不安全的,不会分配资源给进程,以避免死锁的发生。
资源分配:如果系统处于安全状态,则分配资源给进程;否则,进程需要等待或请求被拒绝。
资源释放:当进程完成任务后,释放已分配的资源,使其可供其他进程使用。
优点与限制

优点:

能够有效地避免死锁,保证系统的安全性。

限制:

需要预先知道每个进程的最大资源需求。
资源的分配必须是静态的,不能动态变化。
注意事项

银行家算法主要用于解决进程死锁问题,而不是特定的线程死锁问题。尽管其思想可以在多线程环境中应用,但其主要用途还是在操作系统的层面上管理资源分配,从而避免进程之间的死锁。

dijkstra银行家算法python实现样例

下面是用Python实现Dijkstra银行家算法的示例代码:

import numpy as npdef banker_algorithm(available, allocation, need):num_processes = len(allocation)num_resources = len(available)# 初始化工作向量和分配矩阵work = available.copy()finish = np.zeros(num_processes, dtype=bool)safe_sequence = []while np.any(finish == False):# 查找一个满足条件的进程found = Falsefor i in range(num_processes):if not finish[i] and np.all(need[i] <= work):work += allocation[i]finish[i] = Truesafe_sequence.append(i)found = Truebreak# 没有找到满足条件的进程,即系统不是安全的if not found:return Nonereturn safe_sequencedef main():available = np.array([3, 3, 2])  # 可用资源向量allocation = np.array([[0, 1, 0], [2, 0, 0], [3, 0, 2], [2, 1, 1], [0, 0, 2]])  # 分配矩阵max_need = np.array([[7, 5, 3], [3, 2, 2], [9, 0, 2], [2, 2, 2], [4, 3, 3]])  # 最大需求矩阵need = max_need - allocation  # 计算需求矩阵safe_sequence = banker_algorithm(available, allocation, need)if safe_sequence:print("系统是安全的,安全序列为:")print(safe_sequence)else:print("系统是不安全的")if __name__ == "__main__":main()

运行上述代码将输出系统是否安全以及安全序列。请根据实际情况修改availableallocationmax_need数组来进行测试。

这篇关于python 实现dijkstra银行家算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100021

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll