个人笔记--python画图(一维,二维,三维)

2024-08-23 16:12

本文主要是介绍个人笔记--python画图(一维,二维,三维),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 一维

1. plot

import numpy as np
import matplotlib.pyplot as plt# linspace(): 创建等间距的数值序列
x = np.linspace(0, 2 * np.pi, 100)u = np.sin(x)# 绘制一维图形
plt.figure()
plt.plot(x, u)
plt.title('Plot of sin(x)')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.show()

在这里插入图片描述

2. 二维

2.1 imshow

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
# 创建网格点
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用imshow绘制热图
plt.figure()
plt.imshow(U, extent=(0, 2 * np.pi, 0, 2 * np.pi), origin='lower', cmap='viridis')
plt.colorbar()
plt.title('Heatmap of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.2 contour

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用contour绘制等高线图
plt.figure()
plt.contour(X, Y, U, levels=20, cmap='viridis')
plt.colorbar()
plt.title('Contour of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.3 pcolor

import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)U = np.sin(X) * np.cos(Y)# 使用pcolor绘制伪彩色图
plt.figure()
plt.pcolor(X, Y, U, cmap='viridis')
plt.colorbar()
plt.title('Pcolor of sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

2.4 scatter

import numpy as np
import matplotlib.pyplot as plt# 生成数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)
U = np.sin(X) * np.cos(Y)# 绘制散点图
plt.scatter(X, Y, c=U, cmap='viridis')# 添加标题和标签
plt.title('Scatter plot of U = sin(X) * cos(Y)')
plt.xlabel('X')
plt.ylabel('Y')# 显示图表
plt.colorbar(label='U value')
plt.show()# 上面的X,Y,U维度都是(100,100),
# 下面的x_star, y_star, v0_train维度是(100*100,1)即(10000,1)
# 只要维度一样就可以
# plt.scatter(x_star, y_star, c=v0_train, cmap='viridis')
# plt.colorbar()
# plt.xlabel('X')
# plt.ylabel('Y')
# plt.title('v_0_train')
# plt.show()

在这里插入图片描述

2.5 plot_surface

import numpy as np
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D# 生成x和y
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)# 计算u
U = np.sin(X) * np.cos(Y)# 使用plot_surface绘制三维表面图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, U, cmap='viridis')
ax.set_title('Surface plot of sin(x) * cos(y)')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

2.6 contour3D

import numpy as np
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D# 生成x和y
x = np.linspace(0, 2 * np.pi, 100)
y = np.linspace(0, 2 * np.pi, 100)
X, Y = np.meshgrid(x, y)# 计算u
U = np.sin(X) * np.cos(Y)# 使用contour3D绘制三维等高线图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(X, Y, U, 50, cmap='viridis')
ax.set_title('3D Contour of sin(x) * cos(y)')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

3. 三维

3.1 plot_surface

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 生成x, y, z
x = np.linspace(0, 2 * np.pi, 50)
y = np.linspace(0, 2 * np.pi, 50)
z = np.linspace(0, 2 * np.pi, 50)
X, Y, Z = np.meshgrid(x, y, z)U = np.sin(X) * np.cos(Y) * np.sin(Z)# 固定z,绘制三维表面图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X[:,:,25], Y[:,:,25], U[:,:,25], cmap='viridis')
ax.set_title('Surface plot of sin(x) * cos(y) * sin(z) at z=pi')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

3.2 contour3D

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 生成x, y, z
x = np.linspace(0, 2 * np.pi, 50)
y = np.linspace(0, 2 * np.pi, 50)
z = np.linspace(0, 2 * np.pi, 50)
X, Y, Z = np.meshgrid(x, y, z)U = np.sin(X) * np.cos(Y) * np.sin(Z)# 固定z,绘制三维等高线图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(X[:,:,25], Y[:,:,25], U[:,:,25], 50, cmap='viridis')
ax.set_title('3D Contour of sin(x) * cos(y) * sin(z) at z=pi')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('u')
plt.show()

在这里插入图片描述

4. 存储图像

4.1 一般情况

import matplotlib.pyplot as plt
import numpy as np# 创建一些示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)# 创建一个折线图
plt.plot(x, y)# 使用plt.savefig()保存图像
plt.savefig('sine.png')# 显示图像
plt.show()

4.2 一次存多个图

globals()[f"pic_{time_block}_{AM_count}"] = plt.figure(1, figsize=(15, 15))
predict_np_u = model.predict_U(x_test_current).cpu().detach().numpy()
predict_np_v = model.predict_V(x_test_current).cpu().detach().numpy()
predict_np_p = model.predict_P(x_test_current).cpu().detach().numpy()u_pred = np.reshape(predict_np_u, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')
v_pred = np.reshape(predict_np_v, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')
p_pred = np.reshape(predict_np_p, (x.shape[0], y.shape[0], t_current.shape[0]), order='F')# Adjust subplot parameters to avoid overlap
plt.subplots_adjust(wspace=0.4, hspace=0.4)  # Increase the width and height spacesfor i in range(len(t_1)):# Predictionplt.subplot(3, 3, 1 + 3 * i)plt.pcolor(x_1, y_1, u_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.subplot(3, 3, 2 + 3 * i)plt.pcolor(x_1, y_1, v_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.subplot(3, 3, 3 + 3 * i)plt.pcolor(x_1, y_1, p_pred[:, :, t_pos1[i]], cmap='jet')plt.colorbar()plt.xlabel(r'$x$', fontsize=18)plt.ylabel(r'$y$', fontsize=18)plt.title('Predicted $\hat u(x,y,t)$, t=' + str(t_1[i]), fontsize=15)plt.close()
globals()[f"pic_{time_block}_{AM_count}"].savefig("figures_count/Sol_" + params_name + str(time_block) + "_" + str(AM_count) + ".png", dpi=500, bbox_inches='tight')

用上globals()去命名

这篇关于个人笔记--python画图(一维,二维,三维)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099869

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里