利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用

本文主要是介绍利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title

题目

Collaborative Enhancement of Consistency and  Accuracy in US Diagnosis of Thyroid Nodules Using  Large Language Models

利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性

Background

背景

Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis.

大型语言模型(LLMs)在医学影像解读中具有巨大的潜力。然而,关于其在处理与医学诊断相关的推理问题方面的可行性研究尚不足够。

Method

方法

US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs—OpenAI’s ChatGPT 3.5, ChatGPT 4.0, and Google’s Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model.

2022年7月至2022年12月期间,从一家三级转诊医院回顾性收集了具有病理结果的甲状腺结节超声图像,并用于评估由三个大型语言模型(LLMs)生成的恶性肿瘤诊断——OpenAI的ChatGPT 3.5、ChatGPT 4.0和Google的Bard。评估了诊断的一致性,包括模型之间和模型内部的一致性。随后对LLMs的诊断性能进行了评估和比较,包括准确性、敏感性、特异性和受试者工作特征曲线下面积(AUC),并比较了三种互动方法:人类读片者与LLMs结合,图像到文本模型与LLMs结合,以及端到端卷积神经网络模型。

Conclusion

结论

LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5.

大型语言模型(LLMs),特别是与图像到文本的方法相结合时,在提升医学影像诊断方面显示出潜力。与Bard和ChatGPT 3.5相比,ChatGPT 4.0在一致性和诊断准确性方面表现最佳。

Results

结果

A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65–0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36–0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%–86% (95% CI: 76%, 88%) and sensitivity of 86%–95% (95% CI: 83%, 96%), compared with 74%–86% (95% CI: 71%, 88%) and 74%–91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text–LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader.

对725名患者(平均年龄42.2岁,标准差±14.1;其中516名女性)的1161张甲状腺结节超声图像(498个良性,663个恶性)进行了评估。ChatGPT 4.0和Bard在模型内部显示出高度至几乎完美的一致性(κ范围为0.65–0.86 [95% CI: 0.64, 0.86]),而ChatGPT 3.5显示出中等至高度一致性(κ范围为0.36–0.68 [95% CI: 0.36, 0.68])。ChatGPT 4.0的准确率为78%–86%(95% CI: 76%, 88%),敏感性为86%–95%(95% CI: 83%, 96%),而Bard的准确率和敏感性分别为74%–86%(95% CI: 71%, 88%)和74%–91%(95% CI: 71%, 93%)。此外,使用ChatGPT 4.0时,图像到文本与LLM结合的策略表现出与两名高级读片者和一名初级读片者的人机交互策略相当的AUC(0.83 [95% CI: 0.80, 0.85])和准确性(84% [95% CI: 82%, 86%]),并且超过了仅有一名初级读片者的人机交互策略的表现。

Figure

图片

Figure 1: Diagram of study profile. The top box depicts three distinct model deployment strategies: human–large language model (LLM) interaction, in which a human reader initially interprets the image and the LLM generates a diagnosis; image-to-text–LLM, which employs an image-to-text model followed by LLM diagnosis; and convolutional neural network (CNN), which uses an end-to-end CNN model for image analysis and diagnosis. The middle box illustrates the analysis of LLM agreement and diagnostic performance using American College of Radiology Thyroid Imaging Reporting and Data System criteria. The bottom box illustrates the comparison of the three strategies in distinguishing between benign and malignant thyroid nodules.

图1:研究概况示意图。顶部框显示了三种不同的模型部署策略:人类与大型语言模型(LLM)的互动,其中人类读片者首先解读图像,然后由LLM生成诊断结果;图像到文本与LLM结合的策略,先使用图像到文本模型,然后由LLM进行诊断;以及卷积神经网络(CNN)策略,使用端到端的CNN模型进行图像分析和诊断。中间框展示了使用美国放射学会甲状腺影像报告和数据系统标准分析LLM的一致性和诊断性能。底部框则展示了三种策略在区分良性和恶性甲状腺结节中的比较。

图片

Figure 2: Flowchart of inclusion and exclusion criteria for patients and US im ages. FNA = fine-needle aspiration.

图2:患者和超声图像的纳入和排除标准流程图。FNA = 细针穿刺。

图片

Figure 3: Screenshots show the input prompts used and responses generated by ChatGPT 3.5 (OpenAI; https://chat.openai.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图3:截图显示了基于单个甲状腺结节使用ChatGPT 3.5(OpenAI;https://chat.openai.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

图片

Figure 4: Screenshots show the input prompts used and responses generated by ChatGPT 4.0 (OpenAI; https://chat.openai.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图4:截图显示了基于单个甲状腺结节使用ChatGPT 4.0(OpenAI;https://chat.openai.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

图片

Figure 5: Screenshots show the input prompts used and responses generated by Bard (Google; https://bard.google.com/) based on a single thyroid nodule. This response was recorded as a diagnosis of malignant.

图5:截图显示了基于单个甲状腺结节使用Bard(Google;https://bard.google.com/)的输入提示和生成的响应。此响应被记录为恶性诊断。

Table

图片

Table 1: Demographic and Clinical Characteristics of  Patients

表1:患者的人口统计和临床特征

图片

Table 2: Intra-LLM and Inter-LLM Agreement in Predicting Benign versus Malignant Thyroid Nodules

表2:大型语言模型(LLM)内部及不同LLM之间在预测良性与恶性甲状腺结节方面的一致性分析

图片

Table 3: Performance of Google Bard and ChatGPT 4.0 in Predicting Benign versus Malignant Thyroid Nodules

表3:Google Bard 和 ChatGPT 4.0 在预测良性与恶性甲状腺结节中的表现

图片

Table 4: Performance of Image-to-Text–LLM, Human-LLM Interaction, and CNN Strategies in Predicting Benign versus Malignant Thyroid Nodules

表4:图像到文本-LLM、人类-LLM交互和CNN策略在预测良性与恶性甲状腺结节中的表现

这篇关于利用大型语言模型协作提升甲状腺结节超声诊断的一致性和准确性| 文献速递-基于深度学习的癌症风险预测与疾病预后应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099114

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em