Pandas数据清洗之数据分组和删除重复数据

2024-08-23 07:52

本文主要是介绍Pandas数据清洗之数据分组和删除重复数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据分组

在Pandas中,你可以使用groupby()函数对DataFrame进行分组。这是一个非常强大的功能,可以基于一个或多个列的值来聚合数据。

这里是一个简单的例子来说明如何使用groupby()

  1. 导入Pandas库:

    import pandas as pd
    
  2. 创建一个示例DataFrame:

    data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],'C': [1, 2, 3, 4, 5, 6, 7, 8],'D': [10, 20, 30, 40, 50, 60, 70, 80]
    }
    df = pd.DataFrame(data)
    
  3. 使用groupby()函数进行分组:

    grouped = df.groupby('A')
    
  4. 应用聚合函数:

    • 要计算每个组中C列的总和:
      sum_grouped = grouped['C'].sum()
      
    • 要计算每个组中C列的平均值:
      mean_grouped = grouped['C'].mean()
      

如果你想要基于多列进行分组,只需将列名放在一个列表里即可:

grouped_multi = df.groupby(['A', 'B'])

你可以根据需要选择不同的聚合函数,例如sum(), mean(), count(), min(), max()等。

删除重复数据

在Pandas中,删除DataFrame中的重复行可以通过drop_duplicates()方法来实现。这个方法提供了很多选项来定制你如何处理重复的数据。

以下是一些基本用法:

示例代码:

  1. 导入Pandas库:

    import pandas as pd
    
  2. 创建一个示例DataFrame:

    data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],'C': [1, 2, 3, 4, 5, 6, 7, 8],'D': [10, 20, 30, 40, 50, 60, 70, 80]
    }
    df = pd.DataFrame(data)
    
  3. 删除重复行:

    • 删除所有列都相同的行:

      df_unique = df.drop_duplicates()
      
    • 只考虑特定列进行去重:

      df_unique = df.drop_duplicates(subset=['A', 'B'])
      
    • 保留最后一次出现的重复行:

      df_unique = df.drop_duplicates(keep='last')
      
    • 不保留任何重复行(即删除所有重复行):

      df_unique = df.drop_duplicates(keep=False)
      
  4. 查看结果:

    print(df_unique)
    

参数解释:

  • subset=None: 指定要检查哪些列是否存在重复项。默认为 None,表示检查所有列。
  • keep='first': 指定保留哪个版本的重复项。默认为 'first',表示保留第一次出现的重复项;也可以设置为 'last' 以保留最后一次出现的重复项;如果设置为 False,则删除所有重复项。
  • inplace=False: 如果设置为 True,则直接在原DataFrame上修改并返回 None。如果设置为 False(默认),则返回一个新的DataFrame。

这篇关于Pandas数据清洗之数据分组和删除重复数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098788

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处