ClickHouse与Elasticsearch:大数据时代的两大引擎比较

2024-08-23 05:44

本文主要是介绍ClickHouse与Elasticsearch:大数据时代的两大引擎比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 基本介绍

ClickHouse 

Elasticsearch 

2. 优劣势分析

ClickHouse的优势

ClickHouse的劣势

Elasticsearch的优势

Elasticsearch的劣势

3. 应用案例

4. 总结与选择建议


随着大数据技术的不断发展,企业对数据分析和实时搜索的需求也日益增长。ClickHouse和Elasticsearch作为两款备受欢迎的数据库系统,在不同的应用场景中各展所长。本文将从基本介绍、优劣势分析和应用案例等多个维度,详细探讨ClickHouse与Elasticsearch在大数据处理中的应用。

1. 基本介绍

ClickHouse 

Github地址:ClickHouse · GitHub

ClickHouse是一款由俄罗斯搜索引擎巨头Yandex开发的开源列式数据库管理系统,专为高性能的数据分析设计。自2016年开源以来,ClickHouse因其在处理大规模OLAP(在线分析处理)查询时的卓越表现而迅速流行。它的架构设计使其能够高效处理数十亿行数据,支持复杂的聚合查询和实时分析。

Elasticsearch 

Github地址:elastic · GitHub

Elasticsearch是由Elastic公司基于Apache Lucene开发的分布式搜索引擎。它最初诞生于2010年,旨在为用户提供强大的全文搜索和分析功能。Elasticsearch在短时间内成为日志分析、应用监控和全文搜索领域的标准工具,尤其是作为Elastic Stack(ELK)的一部分,与Logstash和Kibana紧密集成,形成了一个强大的数据收集、存储、分析和可视化平台。

2. 优劣势分析

ClickHouse的优势

  • 高效的查询性能: ClickHouse采用列式存储和向量化执行引擎,能够在处理OLAP查询时展现出极高的性能,特别是在处理大规模数据集时表现优异。
  • 数据压缩: ClickHouse提供了多种数据压缩算法,能够大幅减少存储空间的占用,同时提升I/O性能。
  • 实时数据处理: ClickHouse支持高吞吐量的数据写入,并能在数据写入的同时进行实时查询,非常适合处理流数据和实时分析的场景。
  • 无索引架构: ClickHouse不依赖传统的索引结构,而是通过排序和分区来优化查询,这使得它在处理大规模数据时更加灵活和高效。

ClickHouse的劣势

  • 全文搜索能力有限: ClickHouse并非为全文搜索设计,其在处理复杂搜索查询时表现较弱,特别是在需要模糊匹配或自然语言处理的场景下。
  • 事务支持有限: ClickHouse不支持完全的ACID事务,主要适用于对一致性要求不高的分析场景。
  • 复杂查询的灵活性不足: 虽然在简单聚合查询中表现出色,但ClickHouse在处理复杂的多表联接和嵌套查询时,灵活性可能不如传统的关系型数据库。

Elasticsearch的优势

  • 强大的全文搜索: Elasticsearch基于Lucene,具备强大的全文搜索能力,支持复杂的搜索查询、模糊匹配和自然语言处理,非常适合日志分析和搜索引擎应用。
  • 分布式架构: Elasticsearch天然支持分布式存储和查询,能够轻松扩展以处理海量数据,适应大规模并发查询的需求。
  • 丰富的生态系统: 作为Elastic Stack的核心,Elasticsearch与Logstash(数据收集)和Kibana(数据可视化)无缝集成,形成一个完整的日志分析和监控解决方案。
  • 灵活的查询DSL: Elasticsearch提供了功能强大的查询DSL,支持复杂的过滤、聚合、地理位置查询等多种操作,极大地提高了数据检索的灵活性。

Elasticsearch的劣势

  • 查询性能的限制: 尽管Elasticsearch在搜索方面表现出色,但在处理复杂的OLAP查询时,其性能可能不如ClickHouse等专门的分析型数据库。
  • 数据一致性问题: 在分布式环境中,Elasticsearch可能会面临数据一致性问题,尤其是在节点故障或分片重分配的情况下,可能会导致数据延迟或丢失。
  • 高存储成本: 由于Elasticsearch需要存储大量的索引数据,其存储成本相对较高,尤其在数据量巨大时,存储空间的占用可能成为一个挑战。
  • 维护和调优复杂性: Elasticsearch的分布式架构和索引管理增加了系统的维护和调优难度,特别是在大规模部署时,需要更高的运维技能和资源投入。

3. 应用案例

ClickHouse的应用案例

  • 拼多多:面对海量数据分析需求,拼多多选择ClickHouse作为其数据分析系统,通过数据迁移后,平均查询时间从3小时缩短到了3分钟。
  • 网易云音乐:网易云音乐采用ClickHouse进行数据处理和分析,提升了分析速度,满足了快速变化的业务需求。
  • Yandex Metrica: 作为ClickHouse的原始开发者,Yandex在其流量分析工具Yandex Metrica中广泛使用了ClickHouse,用于处理每天数十亿行的数据,提供实时的用户行为分析和报表生成。
  • Cloudflare: Cloudflare使用ClickHouse来处理其全球网络中的日志数据,支持快速的查询和分析,帮助优化网络性能和安全性。
  • Alibaba: 在Alibaba的某些业务场景中,ClickHouse被用于处理大规模的数据分析任务,如电商数据的实时处理和业务报表生成。

Elasticsearch的应用案例

  • Logz.io: Logz.io是一个基于Elasticsearch的日志分析平台,为用户提供全托管的日志管理服务,支持实时搜索和监控。
  • Netflix: Netflix使用Elasticsearch来监控其全球流媒体平台中的日志数据,帮助运维团队实时分析问题和优化用户体验。
  • GitHub: GitHub利用Elasticsearch来增强其代码搜索功能,使得全球开发者能够快速检索代码库中的内容,提高了开发效率。

4. 总结与选择建议

ClickHouseElasticsearch各自有着显著的优势和特定的应用场景。对于需要高性能分析处理的大数据场景,如实时数据处理和复杂聚合查询,ClickHouse无疑是更好的选择。其列式存储和高效的查询性能使其在OLAP场景中表现卓越。

另一方面,如果你的主要需求是处理日志数据、进行全文搜索或支持实时监控,那么Elasticsearch则是首选。它在处理非结构化数据和提供搜索能力方面表现出色,特别是其在日志分析和搜索引擎中的广泛应用证明了其强大的功能。

最终,选择哪种技术需要根据具体的业务需求、数据特性和应用场景来决定。有时,结合使用两者也是一种有效的策略,例如使用ClickHouse进行大规模数据的分析处理,同时使用Elasticsearch进行日志监控和全文搜索,从而充分利用两者的优势。

这篇关于ClickHouse与Elasticsearch:大数据时代的两大引擎比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098518

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核