ClickHouse与Elasticsearch:大数据时代的两大引擎比较

2024-08-23 05:44

本文主要是介绍ClickHouse与Elasticsearch:大数据时代的两大引擎比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 基本介绍

ClickHouse 

Elasticsearch 

2. 优劣势分析

ClickHouse的优势

ClickHouse的劣势

Elasticsearch的优势

Elasticsearch的劣势

3. 应用案例

4. 总结与选择建议


随着大数据技术的不断发展,企业对数据分析和实时搜索的需求也日益增长。ClickHouse和Elasticsearch作为两款备受欢迎的数据库系统,在不同的应用场景中各展所长。本文将从基本介绍、优劣势分析和应用案例等多个维度,详细探讨ClickHouse与Elasticsearch在大数据处理中的应用。

1. 基本介绍

ClickHouse 

Github地址:ClickHouse · GitHub

ClickHouse是一款由俄罗斯搜索引擎巨头Yandex开发的开源列式数据库管理系统,专为高性能的数据分析设计。自2016年开源以来,ClickHouse因其在处理大规模OLAP(在线分析处理)查询时的卓越表现而迅速流行。它的架构设计使其能够高效处理数十亿行数据,支持复杂的聚合查询和实时分析。

Elasticsearch 

Github地址:elastic · GitHub

Elasticsearch是由Elastic公司基于Apache Lucene开发的分布式搜索引擎。它最初诞生于2010年,旨在为用户提供强大的全文搜索和分析功能。Elasticsearch在短时间内成为日志分析、应用监控和全文搜索领域的标准工具,尤其是作为Elastic Stack(ELK)的一部分,与Logstash和Kibana紧密集成,形成了一个强大的数据收集、存储、分析和可视化平台。

2. 优劣势分析

ClickHouse的优势

  • 高效的查询性能: ClickHouse采用列式存储和向量化执行引擎,能够在处理OLAP查询时展现出极高的性能,特别是在处理大规模数据集时表现优异。
  • 数据压缩: ClickHouse提供了多种数据压缩算法,能够大幅减少存储空间的占用,同时提升I/O性能。
  • 实时数据处理: ClickHouse支持高吞吐量的数据写入,并能在数据写入的同时进行实时查询,非常适合处理流数据和实时分析的场景。
  • 无索引架构: ClickHouse不依赖传统的索引结构,而是通过排序和分区来优化查询,这使得它在处理大规模数据时更加灵活和高效。

ClickHouse的劣势

  • 全文搜索能力有限: ClickHouse并非为全文搜索设计,其在处理复杂搜索查询时表现较弱,特别是在需要模糊匹配或自然语言处理的场景下。
  • 事务支持有限: ClickHouse不支持完全的ACID事务,主要适用于对一致性要求不高的分析场景。
  • 复杂查询的灵活性不足: 虽然在简单聚合查询中表现出色,但ClickHouse在处理复杂的多表联接和嵌套查询时,灵活性可能不如传统的关系型数据库。

Elasticsearch的优势

  • 强大的全文搜索: Elasticsearch基于Lucene,具备强大的全文搜索能力,支持复杂的搜索查询、模糊匹配和自然语言处理,非常适合日志分析和搜索引擎应用。
  • 分布式架构: Elasticsearch天然支持分布式存储和查询,能够轻松扩展以处理海量数据,适应大规模并发查询的需求。
  • 丰富的生态系统: 作为Elastic Stack的核心,Elasticsearch与Logstash(数据收集)和Kibana(数据可视化)无缝集成,形成一个完整的日志分析和监控解决方案。
  • 灵活的查询DSL: Elasticsearch提供了功能强大的查询DSL,支持复杂的过滤、聚合、地理位置查询等多种操作,极大地提高了数据检索的灵活性。

Elasticsearch的劣势

  • 查询性能的限制: 尽管Elasticsearch在搜索方面表现出色,但在处理复杂的OLAP查询时,其性能可能不如ClickHouse等专门的分析型数据库。
  • 数据一致性问题: 在分布式环境中,Elasticsearch可能会面临数据一致性问题,尤其是在节点故障或分片重分配的情况下,可能会导致数据延迟或丢失。
  • 高存储成本: 由于Elasticsearch需要存储大量的索引数据,其存储成本相对较高,尤其在数据量巨大时,存储空间的占用可能成为一个挑战。
  • 维护和调优复杂性: Elasticsearch的分布式架构和索引管理增加了系统的维护和调优难度,特别是在大规模部署时,需要更高的运维技能和资源投入。

3. 应用案例

ClickHouse的应用案例

  • 拼多多:面对海量数据分析需求,拼多多选择ClickHouse作为其数据分析系统,通过数据迁移后,平均查询时间从3小时缩短到了3分钟。
  • 网易云音乐:网易云音乐采用ClickHouse进行数据处理和分析,提升了分析速度,满足了快速变化的业务需求。
  • Yandex Metrica: 作为ClickHouse的原始开发者,Yandex在其流量分析工具Yandex Metrica中广泛使用了ClickHouse,用于处理每天数十亿行的数据,提供实时的用户行为分析和报表生成。
  • Cloudflare: Cloudflare使用ClickHouse来处理其全球网络中的日志数据,支持快速的查询和分析,帮助优化网络性能和安全性。
  • Alibaba: 在Alibaba的某些业务场景中,ClickHouse被用于处理大规模的数据分析任务,如电商数据的实时处理和业务报表生成。

Elasticsearch的应用案例

  • Logz.io: Logz.io是一个基于Elasticsearch的日志分析平台,为用户提供全托管的日志管理服务,支持实时搜索和监控。
  • Netflix: Netflix使用Elasticsearch来监控其全球流媒体平台中的日志数据,帮助运维团队实时分析问题和优化用户体验。
  • GitHub: GitHub利用Elasticsearch来增强其代码搜索功能,使得全球开发者能够快速检索代码库中的内容,提高了开发效率。

4. 总结与选择建议

ClickHouseElasticsearch各自有着显著的优势和特定的应用场景。对于需要高性能分析处理的大数据场景,如实时数据处理和复杂聚合查询,ClickHouse无疑是更好的选择。其列式存储和高效的查询性能使其在OLAP场景中表现卓越。

另一方面,如果你的主要需求是处理日志数据、进行全文搜索或支持实时监控,那么Elasticsearch则是首选。它在处理非结构化数据和提供搜索能力方面表现出色,特别是其在日志分析和搜索引擎中的广泛应用证明了其强大的功能。

最终,选择哪种技术需要根据具体的业务需求、数据特性和应用场景来决定。有时,结合使用两者也是一种有效的策略,例如使用ClickHouse进行大规模数据的分析处理,同时使用Elasticsearch进行日志监控和全文搜索,从而充分利用两者的优势。

这篇关于ClickHouse与Elasticsearch:大数据时代的两大引擎比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098518

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本