Python案例 | Kriging预测钢筋混凝土梁长期挠度

2024-08-23 03:44

本文主要是介绍Python案例 | Kriging预测钢筋混凝土梁长期挠度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Kriging是一种基于高斯过程建模的代理模型,也称为高斯过程回归,是一种用于空间插值和预测的统计方法。最早由丹尼斯·克里金在地质学中提出,通过已知数据点来预测未知点的值,适用于具有空间相关性的情况。

Kriging用于回归问题,具体原理的解释可参考SMT工具箱[1]或在微信公众号、CSDN和B站等网站检索学习。

笔者认为,对于代理模型/机器学习算法理论的学习应配合具体案例代码。因此,本文将通过一个钢筋混凝土梁长期挠度预测实验数据集,使用python来展示Kriging的回归建模效果。

1. 数据来源

本文所采用的钢筋混凝土梁长期挠度数据集来源于之前在世界各地进行的实验工作中收集的包含217个测试的数据集。详细的数据库由Espion[2]从29个不同的研究计划中总结和记录。

下表给出所使用数据的变量名称和统计描述

需要该数据集可关注公众号“UQLearner”,后台回复“Espion”获取。

在这里插入图片描述

数据收集不易,如果对您发表文章有用,还请引用文章:

Dan, W.; Yue, X.; Yu, M.; Li, T.; Zhang, J. Prediction and Global Sensitivity Analysis of Long-Term Deflections in Reinforced Concrete Flexural Structures Using Surrogate Models. Materials 2023, 16 (13), 4671. https://doi.org/10.3390/ma16134671.

2. Python代码实现

# 使用Kriging预测钢筋混凝土梁长期挠度
# Edit by Yue
# 2024.8.22
###################### 1. 导入必要的第三方库库 ######################
import numpy as np
import matplotlib
matplotlib.use('TkAgg') # 用于指定matplotlib使用TkAgg后端进行图形渲染。TkAgg是matplotib的一个后端,它使用Tkinter库来创建图形窗口并显示图表。
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import pandas as pd
from smt.surrogate_models import KRG
###################### 2. 读取钢筋混凝土梁长期挠度数据 ######################
Data = pd.read_excel('Long-Term Deflection of Reinforced Concrete Beams_New.xlsx')  # 读取钢筋混凝土梁长期挠度数据
#print(Data.describe())                       # 输出数据的统计信息,包括计数、平均值、标准差、最小值、最大值、中位数、25%的分位数和75%的分位数。
pd.set_option('display.max_columns', None)   # 设置显示数据的所有列
#print(Data)         # 打印显示所有的列的数据
#print(Data.head())  # 显示数据的前5行###################### 3. 数据预处理 ######################
X = Data.drop(columns=['X2', 'Y'])  # 删除输出列
features = X.columns                # 将X每个变量的每个变量名提取出来,用于后续的特征重要性分析
X = preprocessing.scale(X)          # 进行标准化处理
y = Data['Y']                       # 模型输出为数据中的“Y”列###################### 4. 数据集划分 ######################
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=50)  # 划分训练集和测试集
y_train = y_train.to_numpy()   # 将Series对象转换为numpy数组
y_test = y_test.to_numpy()   # 转不转换都行
print(type(y_train))  ## 4. 模型训练
sm = KRG(theta0=[1e-2])
sm.set_training_values(X_train, y_train)
sm.train()###################### 5. 模型评估 ######################
y_train_pred = sm.predict_values(X_train)  # 预测输出
y_test_pred = sm.predict_values(X_test)  # 预测输出# 训练集均方根误差
RMSE_train = np.sqrt(mean_squared_error(y_train, y_train_pred))
print(f'训练集RMSE:{RMSE_train: .4f}')    # 打印输出RMSE值
# 训练集决定系数R2
R2_train =r2_score(y_train, y_train_pred)
print(f'训练集R2:{R2_train: .4f}')        # 打印输出R2值# 测试集均方根误差
RMSE_test = np.sqrt(mean_squared_error(y_test, y_test_pred))
print(f'测试集RMSE:{RMSE_test: .4f}')    # 打印输出RMSE值
# 测试集决定系数R2
R2_test =r2_score(y_test, y_test_pred)
print(f'测试集R2:{R2_test: .4f}')        # 打印输出R2值###################### 6. 可视化实际值与预测值的关系 ######################
plt.subplot(1, 2, 1)
plt.scatter(y_train, y_train_pred, alpha=0.3, label='Kriging')   # Kriging与真实值的比较
plt.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_train: {R2_train: .4f}')
plt.legend()plt.subplot(1, 2, 2)
plt.scatter(y_test, y_test_pred, alpha=0.3, label='Kriging')          # Kriging与真实值的比较
plt.plot([y_test_pred.min(), y_test_pred.max()], [y_test_pred.min(), y_test_pred.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_test: {R2_test: .4f}')
plt.legend()plt.tight_layout()  # 自动调整图形的布局,确保元素如坐标轴标签、刻度和标题不会重叠
plt.show()          # 显示图像

3. 结果展示

从上图展示的结果来看,Kriging可用于钢筋混凝土梁长期挠度的预测。

参考文献

[1] https://smt.readthedocs.io/en/latest/_src_docs/surrogate_models/gpr/krg.html)

[2] Espion B (1988a) Long term sustained loading tests on reinforced concrete beams. Bull Serv Génie Civil

这篇关于Python案例 | Kriging预测钢筋混凝土梁长期挠度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098256

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、