动态规划篇-代码随想录算法训练营第三十七天| 打家劫舍Ⅰ,打家劫舍Ⅱ,打家劫舍Ⅲ

本文主要是介绍动态规划篇-代码随想录算法训练营第三十七天| 打家劫舍Ⅰ,打家劫舍Ⅱ,打家劫舍Ⅲ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

打家劫舍Ⅰ

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍

题目描述:

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

解题思路:

1、状态表示:
f[i]:偷到i位置时,偷nums[i],此时的最大金额

g[i]:偷到i位置时,不偷nums[i],此时的最大金额

2、状态转移方程:

f[i] = g[i-1] + nums[i];

g[i] = max(g[i-1],f[i-1]);

3、初始化:

f[0] = nums[0], g[0] = 0

4、遍历顺序:

从左往右

5、返回值:

返回max(f[n-1], g[n-1])

代码:

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> f(n);auto g = f;f[0] = nums[0];for(int i = 1; i < n; i++){f[i] = g[i-1] + nums[i];g[i] = max(g[i-1],f[i-1]);}return max(f[n-1],g[n-1]);}
};

打家劫舍Ⅱ

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,房间连成环了那还偷不偷呢?| LeetCode:213.打家劫舍II

题目描述:

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

解题思路:

这⼀个问题是「打家劫舍I」问题的变形。上⼀个问题是⼀个「单排」的模式,这⼀个问题是⼀个「环形」的模式,也就是⾸尾是相连的。但是我们可以将「环形」问题转化为「两个单排」问题:

  1. 偷第⼀个房屋时的最⼤⾦额 x ,此时不能偷最后⼀个房⼦,因此就是偷 [0, n - 2] 区间的房⼦;
  2. 不偷第⼀个房屋时的最⼤⾦额 y ,此时可以偷最后⼀个房⼦,因此就是偷 [1, n - 1] 区间的房⼦;

两种情况下的「最⼤值」,就是最终的结果。因此,问题就转化成求「两次单排结果的最⼤值」。

代码:

class Solution {
public:int  cirrob(vector<int>& nums, int left, int right){if(left > right) return 0;int n = nums.size();vector<int> f(n);auto g = f;f[left] = nums[left];for(int i = left+1; i <= right; i++){f[i] = g[i-1]+nums[i];g[i] = max(f[i-1],g[i-1]);}return max(f[right],g[right]);}int rob(vector<int>& nums) {int n = nums.size();return max(nums[0]+cirrob(nums,2,n-2),cirrob(nums,1,n-1));}
};

打家劫舍Ⅲ

题目链接:. - 力扣(LeetCode)

讲解视频:

动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍3

题目描述:

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:

输入: root = [3,2,3,null,3,null,1]
输出: 7 
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

解题思路:

结合递归三部曲的动态规划五部曲

1、状态表示(确定递归函数的参数和返回值)

这里我们要求一个节点偷与不偷的两个状态所得到的金钱,那么

返回值就是一个长度为2的数组,参数为当前节点。代码如下:

vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

2、初始化(确定终止条件)

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector<int>{0, 0};

这也相当于dp数组的初始化

3、确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中

4、确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; 

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};

5、举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱

代码:

class Solution {
public:vector<int> treeRob(TreeNode* cur){if(cur == nullptr) return {0,0};vector<int> left = treeRob(cur->left);vector<int> right = treeRob(cur->right);int f = cur->val + left[0] + right[0];//选int g = max(left[0],left[1]) + max(right[0],right[1]);//不选return {g,f};}int rob(TreeNode* root) {vector<int> result = treeRob(root);return max(result[0],result[1]);}
};

这篇关于动态规划篇-代码随想录算法训练营第三十七天| 打家劫舍Ⅰ,打家劫舍Ⅱ,打家劫舍Ⅲ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098172

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill