【python】灰色预测 GM(1,1) 模型

2024-08-23 02:52
文章标签 python 模型 预测 灰色 gm

本文主要是介绍【python】灰色预测 GM(1,1) 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • python代码


前言

用 python 复刻上一篇博客的 Matlab 代码。

【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab

python代码

# %%
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']   #设置字体
mpl.rcParams['axes.unicode_minus'] = False     # - 号设置year =np.array([1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004]).T  # 横坐标表示年份
x0 = np.array([174,179,183,189,207,234,220.5,256,270,285]).T # 原始数据序列# 创建第一个图形
plt.figure(1)
n = x0.shape[0]
x1 = np.cumsum(x0)
plt.plot(year,x0,'o-')
plt.plot(year,x1,'r-')
plt.legend('x(0)','x(1)')
plt.grid(True)
plt.xlabel('年份')  
plt.ylabel('排污总量')# %%
# 级比检验
rho = np.zeros((n,))
# 计算 rho
for i in range(1, n):rho[i] = x0[i] / x1[i-1]# 创建图表
plt.figure(2)
plt.plot(year[1:], rho[1:], 'o-', label='rho')
plt.plot([year[1], year[-1]], [0.5, 0.5], '-', label='临界线')
plt.grid(True)# 在指定坐标添加文本
plt.text(year[-2] + 0.2, 0.55, '临界线')# 设置x轴刻度
plt.xticks(year[1:])# 添加标签
plt.xlabel('年份')
plt.ylabel('原始数据的光滑度')# 显示图表
plt.legend()
plt.show()# %%
# 指标1:光滑比小于0.5的数据占比
num1 = np.sum(rho<0.5)/(n-1)
# 指标2:除去前两个时期外,光滑比小于0.5的数据占比
num2 = np.sum(rho[2:]<0.5)/(n-3)print("指标一:",num1*100,"%")
print("指标二:",num2*100,"%")# %%
def gm11(x0, predict_num):n = x0.shape[0]x1 = np.cumsum(x0)z1 = 0.5 * x1[1:n] + 0.5 * x1[0:n-1]y = x0[1:]x = z1# 最小二乘法求解k = ((n-1)*np.sum(x*y)-np.sum(x)*np.sum(y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))b = (np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))a = -ku = bx0_hat = np.zeros((n,))x0_hat[0] = x0[0]for m in range(n-1):x0_hat[m+1] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(m+1))result = np.zeros((predict_num,))for i in range(predict_num):result[i] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(n+i))# 计算绝对残差和相对残差absolute_residuals = x0[1:] - x0_hat[1:]   # 从第二项开始计算绝对残差,因为第一项是相同的relative_residuals = np.abs(absolute_residuals) / x0[1:]  # 计算相对残差# 计算级比和级比偏差class_ratio = x0[1:] / x0[0:n-1]eta = np.abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio)) # 计算级比偏差return result, x0_hat, relative_residuals, eta# %%
if num1 > 0.6 and num2 > 0.9:if n > 7:    # 将数据分为训练组和试验组(根据原数据量大小n来取,n小于7则取最后两年为试验组,n大于7则取最后三年为试验组)test_num = 3else:test_num = 2train_x0 = x0[0:n-test_num]   # 训练数据print('训练数据是: ',train_x0)test_x0 =  x0[n-test_num:]  # 试验数据print('试验数据是: ',test_x0)# 使用GM(1,1)模型对训练数据进行训练,返回的result就是往后预测test_num期的数据print('GM(1,1)模型预测')result1,_,_,_ = gm11(train_x0, test_num) # 使用传统的GM(1,1)模型对训练数据,并预测后test_num期的结果# 绘制对试验数据进行预测的图形test_year = year[n-test_num:]  # 试验组对应的年份plt.figure(3)plt.plot(test_year,test_x0,'o-',label='试验组的真实数据')plt.plot(test_year,result1,'*-',label='预测值')plt.grid(True) # 设置x轴刻度plt.xticks(year[n-test_num:])plt.legend() plt.xlabel('年份')plt.ylabel('排污总量')predict_num = int(input('请输入你要往后面预测的期数:'))# 计算使用传统GM模型的结果result, x0_hat, relative_residuals, eta = gm11(x0, predict_num)## 绘制相对残差和级比偏差的图形plt.figure(4)# 创建一个2行1列的子图布局plt.subplot(2, 1, 1)  # 第1个子图plt.plot(year[1:], relative_residuals,'*-',label='相对残差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.subplot(2, 1, 2)  # 第2个子图plt.plot(year[1:], eta,'*-',label='级比偏差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.xlabel('年份')## 残差检验average_relative_residuals = np.mean(relative_residuals)  # 计算平均相对残差 mean函数用来均值print('平均相对残差为',average_relative_residuals)## 级比偏差检验average_eta = np.mean(eta)  # 计算平均级比偏差print('平均级比偏差为',average_eta)## 绘制最终的预测效果图plt.figure(5)plt.plot(year, x0, '-o', label='原始数据')plt.plot(year, x0_hat, '-*m', label='拟合数据')year_predict = np.arange(year[n-1], year[n-1] + predict_num + 1)res = np.append(x0[n-1],result)plt.plot(year_predict, res, '-*k', label='预测数据' )plt.grid(True) plt.legend()  plt.xticks(year[1:] + predict_num)plt.xlabel('年份')plt.ylabel('排污总量')

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于【python】灰色预测 GM(1,1) 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098151

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以