【python】灰色预测 GM(1,1) 模型

2024-08-23 02:52
文章标签 python 模型 预测 灰色 gm

本文主要是介绍【python】灰色预测 GM(1,1) 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • python代码


前言

用 python 复刻上一篇博客的 Matlab 代码。

【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab

python代码

# %%
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']   #设置字体
mpl.rcParams['axes.unicode_minus'] = False     # - 号设置year =np.array([1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004]).T  # 横坐标表示年份
x0 = np.array([174,179,183,189,207,234,220.5,256,270,285]).T # 原始数据序列# 创建第一个图形
plt.figure(1)
n = x0.shape[0]
x1 = np.cumsum(x0)
plt.plot(year,x0,'o-')
plt.plot(year,x1,'r-')
plt.legend('x(0)','x(1)')
plt.grid(True)
plt.xlabel('年份')  
plt.ylabel('排污总量')# %%
# 级比检验
rho = np.zeros((n,))
# 计算 rho
for i in range(1, n):rho[i] = x0[i] / x1[i-1]# 创建图表
plt.figure(2)
plt.plot(year[1:], rho[1:], 'o-', label='rho')
plt.plot([year[1], year[-1]], [0.5, 0.5], '-', label='临界线')
plt.grid(True)# 在指定坐标添加文本
plt.text(year[-2] + 0.2, 0.55, '临界线')# 设置x轴刻度
plt.xticks(year[1:])# 添加标签
plt.xlabel('年份')
plt.ylabel('原始数据的光滑度')# 显示图表
plt.legend()
plt.show()# %%
# 指标1:光滑比小于0.5的数据占比
num1 = np.sum(rho<0.5)/(n-1)
# 指标2:除去前两个时期外,光滑比小于0.5的数据占比
num2 = np.sum(rho[2:]<0.5)/(n-3)print("指标一:",num1*100,"%")
print("指标二:",num2*100,"%")# %%
def gm11(x0, predict_num):n = x0.shape[0]x1 = np.cumsum(x0)z1 = 0.5 * x1[1:n] + 0.5 * x1[0:n-1]y = x0[1:]x = z1# 最小二乘法求解k = ((n-1)*np.sum(x*y)-np.sum(x)*np.sum(y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))b = (np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))a = -ku = bx0_hat = np.zeros((n,))x0_hat[0] = x0[0]for m in range(n-1):x0_hat[m+1] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(m+1))result = np.zeros((predict_num,))for i in range(predict_num):result[i] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(n+i))# 计算绝对残差和相对残差absolute_residuals = x0[1:] - x0_hat[1:]   # 从第二项开始计算绝对残差,因为第一项是相同的relative_residuals = np.abs(absolute_residuals) / x0[1:]  # 计算相对残差# 计算级比和级比偏差class_ratio = x0[1:] / x0[0:n-1]eta = np.abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio)) # 计算级比偏差return result, x0_hat, relative_residuals, eta# %%
if num1 > 0.6 and num2 > 0.9:if n > 7:    # 将数据分为训练组和试验组(根据原数据量大小n来取,n小于7则取最后两年为试验组,n大于7则取最后三年为试验组)test_num = 3else:test_num = 2train_x0 = x0[0:n-test_num]   # 训练数据print('训练数据是: ',train_x0)test_x0 =  x0[n-test_num:]  # 试验数据print('试验数据是: ',test_x0)# 使用GM(1,1)模型对训练数据进行训练,返回的result就是往后预测test_num期的数据print('GM(1,1)模型预测')result1,_,_,_ = gm11(train_x0, test_num) # 使用传统的GM(1,1)模型对训练数据,并预测后test_num期的结果# 绘制对试验数据进行预测的图形test_year = year[n-test_num:]  # 试验组对应的年份plt.figure(3)plt.plot(test_year,test_x0,'o-',label='试验组的真实数据')plt.plot(test_year,result1,'*-',label='预测值')plt.grid(True) # 设置x轴刻度plt.xticks(year[n-test_num:])plt.legend() plt.xlabel('年份')plt.ylabel('排污总量')predict_num = int(input('请输入你要往后面预测的期数:'))# 计算使用传统GM模型的结果result, x0_hat, relative_residuals, eta = gm11(x0, predict_num)## 绘制相对残差和级比偏差的图形plt.figure(4)# 创建一个2行1列的子图布局plt.subplot(2, 1, 1)  # 第1个子图plt.plot(year[1:], relative_residuals,'*-',label='相对残差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.subplot(2, 1, 2)  # 第2个子图plt.plot(year[1:], eta,'*-',label='级比偏差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.xlabel('年份')## 残差检验average_relative_residuals = np.mean(relative_residuals)  # 计算平均相对残差 mean函数用来均值print('平均相对残差为',average_relative_residuals)## 级比偏差检验average_eta = np.mean(eta)  # 计算平均级比偏差print('平均级比偏差为',average_eta)## 绘制最终的预测效果图plt.figure(5)plt.plot(year, x0, '-o', label='原始数据')plt.plot(year, x0_hat, '-*m', label='拟合数据')year_predict = np.arange(year[n-1], year[n-1] + predict_num + 1)res = np.append(x0[n-1],result)plt.plot(year_predict, res, '-*k', label='预测数据' )plt.grid(True) plt.legend()  plt.xticks(year[1:] + predict_num)plt.xlabel('年份')plt.ylabel('排污总量')

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于【python】灰色预测 GM(1,1) 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098151

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数