【python】灰色预测 GM(1,1) 模型

2024-08-23 02:52
文章标签 python 模型 预测 灰色 gm

本文主要是介绍【python】灰色预测 GM(1,1) 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • python代码


前言

用 python 复刻上一篇博客的 Matlab 代码。

【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab

python代码

# %%
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']   #设置字体
mpl.rcParams['axes.unicode_minus'] = False     # - 号设置year =np.array([1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004]).T  # 横坐标表示年份
x0 = np.array([174,179,183,189,207,234,220.5,256,270,285]).T # 原始数据序列# 创建第一个图形
plt.figure(1)
n = x0.shape[0]
x1 = np.cumsum(x0)
plt.plot(year,x0,'o-')
plt.plot(year,x1,'r-')
plt.legend('x(0)','x(1)')
plt.grid(True)
plt.xlabel('年份')  
plt.ylabel('排污总量')# %%
# 级比检验
rho = np.zeros((n,))
# 计算 rho
for i in range(1, n):rho[i] = x0[i] / x1[i-1]# 创建图表
plt.figure(2)
plt.plot(year[1:], rho[1:], 'o-', label='rho')
plt.plot([year[1], year[-1]], [0.5, 0.5], '-', label='临界线')
plt.grid(True)# 在指定坐标添加文本
plt.text(year[-2] + 0.2, 0.55, '临界线')# 设置x轴刻度
plt.xticks(year[1:])# 添加标签
plt.xlabel('年份')
plt.ylabel('原始数据的光滑度')# 显示图表
plt.legend()
plt.show()# %%
# 指标1:光滑比小于0.5的数据占比
num1 = np.sum(rho<0.5)/(n-1)
# 指标2:除去前两个时期外,光滑比小于0.5的数据占比
num2 = np.sum(rho[2:]<0.5)/(n-3)print("指标一:",num1*100,"%")
print("指标二:",num2*100,"%")# %%
def gm11(x0, predict_num):n = x0.shape[0]x1 = np.cumsum(x0)z1 = 0.5 * x1[1:n] + 0.5 * x1[0:n-1]y = x0[1:]x = z1# 最小二乘法求解k = ((n-1)*np.sum(x*y)-np.sum(x)*np.sum(y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))b = (np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/((n-1)*np.sum(x*x)-np.sum(x)*np.sum(x))a = -ku = bx0_hat = np.zeros((n,))x0_hat[0] = x0[0]for m in range(n-1):x0_hat[m+1] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(m+1))result = np.zeros((predict_num,))for i in range(predict_num):result[i] = (1-np.exp(a))*(x0[0]-u/a)*np.exp(-a*(n+i))# 计算绝对残差和相对残差absolute_residuals = x0[1:] - x0_hat[1:]   # 从第二项开始计算绝对残差,因为第一项是相同的relative_residuals = np.abs(absolute_residuals) / x0[1:]  # 计算相对残差# 计算级比和级比偏差class_ratio = x0[1:] / x0[0:n-1]eta = np.abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio)) # 计算级比偏差return result, x0_hat, relative_residuals, eta# %%
if num1 > 0.6 and num2 > 0.9:if n > 7:    # 将数据分为训练组和试验组(根据原数据量大小n来取,n小于7则取最后两年为试验组,n大于7则取最后三年为试验组)test_num = 3else:test_num = 2train_x0 = x0[0:n-test_num]   # 训练数据print('训练数据是: ',train_x0)test_x0 =  x0[n-test_num:]  # 试验数据print('试验数据是: ',test_x0)# 使用GM(1,1)模型对训练数据进行训练,返回的result就是往后预测test_num期的数据print('GM(1,1)模型预测')result1,_,_,_ = gm11(train_x0, test_num) # 使用传统的GM(1,1)模型对训练数据,并预测后test_num期的结果# 绘制对试验数据进行预测的图形test_year = year[n-test_num:]  # 试验组对应的年份plt.figure(3)plt.plot(test_year,test_x0,'o-',label='试验组的真实数据')plt.plot(test_year,result1,'*-',label='预测值')plt.grid(True) # 设置x轴刻度plt.xticks(year[n-test_num:])plt.legend() plt.xlabel('年份')plt.ylabel('排污总量')predict_num = int(input('请输入你要往后面预测的期数:'))# 计算使用传统GM模型的结果result, x0_hat, relative_residuals, eta = gm11(x0, predict_num)## 绘制相对残差和级比偏差的图形plt.figure(4)# 创建一个2行1列的子图布局plt.subplot(2, 1, 1)  # 第1个子图plt.plot(year[1:], relative_residuals,'*-',label='相对残差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.subplot(2, 1, 2)  # 第2个子图plt.plot(year[1:], eta,'*-',label='级比偏差')plt.xticks(year[1:])plt.legend()plt.grid(True) plt.xlabel('年份')## 残差检验average_relative_residuals = np.mean(relative_residuals)  # 计算平均相对残差 mean函数用来均值print('平均相对残差为',average_relative_residuals)## 级比偏差检验average_eta = np.mean(eta)  # 计算平均级比偏差print('平均级比偏差为',average_eta)## 绘制最终的预测效果图plt.figure(5)plt.plot(year, x0, '-o', label='原始数据')plt.plot(year, x0_hat, '-*m', label='拟合数据')year_predict = np.arange(year[n-1], year[n-1] + predict_num + 1)res = np.append(x0[n-1],result)plt.plot(year_predict, res, '-*k', label='预测数据' )plt.grid(True) plt.legend()  plt.xticks(year[1:] + predict_num)plt.xlabel('年份')plt.ylabel('排污总量')

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于【python】灰色预测 GM(1,1) 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098151

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too