概率统计Python计算:解2-维几何概型问题

2024-08-22 22:58

本文主要是介绍概率统计Python计算:解2-维几何概型问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对于2-维空间的几何概型,其中事件的概率须通过计算平面区域的面积才能求得。由函数曲线围成的区域 D = { ( x , y ) ∣ a ≤ x ≤ b , f 1 ( x ) ≤ y ≤ f 2 ( x ) } D=\{(x, y)|a\leq x\leq b, f_1(x)\leq y\leq f_2(x)\} D={(x,y)axb,f1(x)yf2(x)},其面积我们可以用二重积分求得:
D 的面积 = ∬ D d σ = ∫ a b ( ∫ f 1 ( x ) f 2 ( x ) d y ) d x D\text{的面积}=\iint\limits_Dd\sigma=\int_a^b\left(\int_{f_1 (x)}^{f_2 (x)}dy\right) dx D的面积=Ddσ=ab(f1(x)f2(x)dy)dx
Python的scipy.integrate包里就包含了通用的计算二重积分的函数dblquad。为针对性更强,更便于计算几何概型中事件的概率,我们将dblquad包装成如下的计算平面区域面积的函数:

from scipy.integrate import dblquad
def areaBetween(a, b, f1, f2):one = lambda x, y: 1area, _ =dblquad(one, a, b, f1, f2)return area

程序的第1行,从scipy.integrate包中导入dblquad函数。Scipy是一个用于科学计算的Python代码包,包含了各种科学与工程技术领域的数值计算工具。用Python讨论概率统计的各种计算,都需要引用其中的代码模块(包括类、对象和函数)。例如,上述代码中引入的integrate.dblquad就是其中一个关于二重积分计算的函数。
第2~5行定义的函数areaBetween,其功能就是计算并返回平面区域 D = { ( x , y ) ∣ a ≤ x ≤ b , f 1 ( x ) ≤ y ≤ f 2 ( x ) } D=\{(x, y)|a\leq x\leq b, f_1(x)\leq y\leq f_2(x)\} D={(x,y)axb,f1(x)yf2(x)}的面积。该函数包含4个参数,a, b, f1和f2分别表示区域的边界。显然,a、b是实数参数,而f1和f2是函数参数。
用二重积分计算平面区域 D D D的面积, D D D的边界是作为积分的上下限使用的,此时的被积函数是常数1。第3行我们用lambda运算符定义了常函数1,命名为one。注意,这是一个二元函数(有两个参数:x和y),用来表示被积函数。
第4行实际上就是调用dblquad函数计算边界为 a ≤ x ≤ b a\leq x\leq b axb, f 1 ( x ) ≤ y ≤ f 2 ( x ) f_1(x)\leq y\leq f_2(x) f1(x)yf2(x)的平面区域面积。该函数有5个参数:其一为被积函数,我们传递第3行的one;其二、三为x的上、下界,我们传递a和b;其四、五是y的上、下界,我们传递f1和f2。该函数返回由两个值组成二元组。第一个分量就是计算得到的积分值,我们赋予area;第二个分量是可能存在的误差,我们用“ _ {\_} _”隐藏之。第5行将area作为areaBetween函数的返回值返回。
例1 平面上画有一些平行线,它们之间的距离都等于a,向此平面任投一长度为 l ( l < a ) l(l<a) l(l<a)的针,试求此针与任一平行线相交的概率。在这里插入图片描述
解: 投针问题如上图所示。设针的中点和与之较近的平行线之间的距离为 x x x,针与该条平行线的夹角为 φ \varphi φ。显然 x x x φ \varphi φ满足 0 ≤ x ≤ a / 2 0\leq x \leq a/2 0xa/2 0 ≤ φ ≤ π 0\leq \varphi\leq\pi 0φπ。即该试验的样本空间 S = { ( x , φ ) ∣ 0 ≤ x ≤ a / 2 , 0 ≤ φ ≤ π } S=\{(x, \varphi)| 0\leq x\leq a/2, 0\leq \varphi\leq\pi\} S={(x,φ)∣0xa/2,0φπ}。事件 A A A:“所投掷的针与平行线之一相交”发生当且仅当 x ≤ l 2 s i n φ x\leq\frac{l}{2}sin\varphi x2lsinφ 0 ≤ φ ≤ π 0\leq\varphi\leq\pi 0φπ)。即 A = { ( x , φ ) ∣ x ≤ l 2 s i n φ , 0 ≤ φ ≤ π } A=\{(x, \varphi)| x\leq\frac{l}{2}sin\varphi, 0\leq\varphi\leq\pi\} A={(x,φ)x2lsinφ,0φπ}
(见下图)。由投针的随机性可知这是一个几何概型。
在这里插入图片描述
样本空间 S S S的面积 μ ( S ) = a 2 π \mu(S)=\frac{a}{2}\pi μ(S)=2aπ,事件 A A A的面积 μ ( A ) = ∫ 0 π l 2 s i n φ d φ = l \mu(A)=\int_0^\pi\frac{l}{2}sin\varphi d\varphi=l μ(A)=0π2lsinφdφ=l。于是
P ( A ) = μ ( A ) μ ( S ) = 2 l a π . P(A)=\frac{\mu(A)}{\mu(S)}=\frac{2l}{a\pi}. P(A)=μ(S)μ(A)=2l.
下列代码就 a = 4 a=4 a=4 l = 3 l=3 l=3验算投针问题。

from math import sin, pi                    #导入sin,pi
a=4                                         #设置a的值
l=3                                         #设置l的值
zero=lambda x: 0                            #定义y的下边界
halfa=lambda x: a/2                         #样本空间的上边界
f=lambda x: l*sin(x)/2                   	#事件A的上边界
Aarea=areaBetween(0, pi, zero, f)        	#事件A的面积
Sarea=areaBetween(0, pi, zero, halfa)    	#样本空间面积
print('P(A)=%.4f'%(Aarea/Sarea))

第2,3行分别将平行线距离a和针的长度l初始化为4和3。第4,5,6行用lambda运算符定义了值为0的常函数zero、带有因子 l / 2 l/2 l/2的正弦函数(math包中定义的正弦函数sin)f和值为 a / 2 a/2 a/2的常函数halfa。第7行调用函数areaBetween,计算0与 l 2 s i n φ \frac{l}{2}sin\varphi 2lsinφ围成的区域的面积,四个参数0, pi, zero, f界定了此区域。计算的结果Aarea就是事件A的面积。第8行调用areaBetween,计算表示S的矩形面积Sarea,该矩形由参数0, pi(math包中定义的常量 π \pi π), zero, halfa界定。第10行输出A的概率。运行程序,输出

P(A)=0.4775

其中的0.4775恰是 a = 4 a=4 a=4 l = 3 l=3 l=3时, P ( A ) = 2 l a π = 3 2 π P(A)=\frac{2l}{a\pi}=\frac{3}{2\pi} P(A)=2l=2π3精确到万分位的近似值。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:解2-维几何概型问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097636

相关文章

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下