概率统计Python计算:解2-维几何概型问题

2024-08-22 22:58

本文主要是介绍概率统计Python计算:解2-维几何概型问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对于2-维空间的几何概型,其中事件的概率须通过计算平面区域的面积才能求得。由函数曲线围成的区域 D = { ( x , y ) ∣ a ≤ x ≤ b , f 1 ( x ) ≤ y ≤ f 2 ( x ) } D=\{(x, y)|a\leq x\leq b, f_1(x)\leq y\leq f_2(x)\} D={(x,y)axb,f1(x)yf2(x)},其面积我们可以用二重积分求得:
D 的面积 = ∬ D d σ = ∫ a b ( ∫ f 1 ( x ) f 2 ( x ) d y ) d x D\text{的面积}=\iint\limits_Dd\sigma=\int_a^b\left(\int_{f_1 (x)}^{f_2 (x)}dy\right) dx D的面积=Ddσ=ab(f1(x)f2(x)dy)dx
Python的scipy.integrate包里就包含了通用的计算二重积分的函数dblquad。为针对性更强,更便于计算几何概型中事件的概率,我们将dblquad包装成如下的计算平面区域面积的函数:

from scipy.integrate import dblquad
def areaBetween(a, b, f1, f2):one = lambda x, y: 1area, _ =dblquad(one, a, b, f1, f2)return area

程序的第1行,从scipy.integrate包中导入dblquad函数。Scipy是一个用于科学计算的Python代码包,包含了各种科学与工程技术领域的数值计算工具。用Python讨论概率统计的各种计算,都需要引用其中的代码模块(包括类、对象和函数)。例如,上述代码中引入的integrate.dblquad就是其中一个关于二重积分计算的函数。
第2~5行定义的函数areaBetween,其功能就是计算并返回平面区域 D = { ( x , y ) ∣ a ≤ x ≤ b , f 1 ( x ) ≤ y ≤ f 2 ( x ) } D=\{(x, y)|a\leq x\leq b, f_1(x)\leq y\leq f_2(x)\} D={(x,y)axb,f1(x)yf2(x)}的面积。该函数包含4个参数,a, b, f1和f2分别表示区域的边界。显然,a、b是实数参数,而f1和f2是函数参数。
用二重积分计算平面区域 D D D的面积, D D D的边界是作为积分的上下限使用的,此时的被积函数是常数1。第3行我们用lambda运算符定义了常函数1,命名为one。注意,这是一个二元函数(有两个参数:x和y),用来表示被积函数。
第4行实际上就是调用dblquad函数计算边界为 a ≤ x ≤ b a\leq x\leq b axb, f 1 ( x ) ≤ y ≤ f 2 ( x ) f_1(x)\leq y\leq f_2(x) f1(x)yf2(x)的平面区域面积。该函数有5个参数:其一为被积函数,我们传递第3行的one;其二、三为x的上、下界,我们传递a和b;其四、五是y的上、下界,我们传递f1和f2。该函数返回由两个值组成二元组。第一个分量就是计算得到的积分值,我们赋予area;第二个分量是可能存在的误差,我们用“ _ {\_} _”隐藏之。第5行将area作为areaBetween函数的返回值返回。
例1 平面上画有一些平行线,它们之间的距离都等于a,向此平面任投一长度为 l ( l < a ) l(l<a) l(l<a)的针,试求此针与任一平行线相交的概率。在这里插入图片描述
解: 投针问题如上图所示。设针的中点和与之较近的平行线之间的距离为 x x x,针与该条平行线的夹角为 φ \varphi φ。显然 x x x φ \varphi φ满足 0 ≤ x ≤ a / 2 0\leq x \leq a/2 0xa/2 0 ≤ φ ≤ π 0\leq \varphi\leq\pi 0φπ。即该试验的样本空间 S = { ( x , φ ) ∣ 0 ≤ x ≤ a / 2 , 0 ≤ φ ≤ π } S=\{(x, \varphi)| 0\leq x\leq a/2, 0\leq \varphi\leq\pi\} S={(x,φ)∣0xa/2,0φπ}。事件 A A A:“所投掷的针与平行线之一相交”发生当且仅当 x ≤ l 2 s i n φ x\leq\frac{l}{2}sin\varphi x2lsinφ 0 ≤ φ ≤ π 0\leq\varphi\leq\pi 0φπ)。即 A = { ( x , φ ) ∣ x ≤ l 2 s i n φ , 0 ≤ φ ≤ π } A=\{(x, \varphi)| x\leq\frac{l}{2}sin\varphi, 0\leq\varphi\leq\pi\} A={(x,φ)x2lsinφ,0φπ}
(见下图)。由投针的随机性可知这是一个几何概型。
在这里插入图片描述
样本空间 S S S的面积 μ ( S ) = a 2 π \mu(S)=\frac{a}{2}\pi μ(S)=2aπ,事件 A A A的面积 μ ( A ) = ∫ 0 π l 2 s i n φ d φ = l \mu(A)=\int_0^\pi\frac{l}{2}sin\varphi d\varphi=l μ(A)=0π2lsinφdφ=l。于是
P ( A ) = μ ( A ) μ ( S ) = 2 l a π . P(A)=\frac{\mu(A)}{\mu(S)}=\frac{2l}{a\pi}. P(A)=μ(S)μ(A)=2l.
下列代码就 a = 4 a=4 a=4 l = 3 l=3 l=3验算投针问题。

from math import sin, pi                    #导入sin,pi
a=4                                         #设置a的值
l=3                                         #设置l的值
zero=lambda x: 0                            #定义y的下边界
halfa=lambda x: a/2                         #样本空间的上边界
f=lambda x: l*sin(x)/2                   	#事件A的上边界
Aarea=areaBetween(0, pi, zero, f)        	#事件A的面积
Sarea=areaBetween(0, pi, zero, halfa)    	#样本空间面积
print('P(A)=%.4f'%(Aarea/Sarea))

第2,3行分别将平行线距离a和针的长度l初始化为4和3。第4,5,6行用lambda运算符定义了值为0的常函数zero、带有因子 l / 2 l/2 l/2的正弦函数(math包中定义的正弦函数sin)f和值为 a / 2 a/2 a/2的常函数halfa。第7行调用函数areaBetween,计算0与 l 2 s i n φ \frac{l}{2}sin\varphi 2lsinφ围成的区域的面积,四个参数0, pi, zero, f界定了此区域。计算的结果Aarea就是事件A的面积。第8行调用areaBetween,计算表示S的矩形面积Sarea,该矩形由参数0, pi(math包中定义的常量 π \pi π), zero, halfa界定。第10行输出A的概率。运行程序,输出

P(A)=0.4775

其中的0.4775恰是 a = 4 a=4 a=4 l = 3 l=3 l=3时, P ( A ) = 2 l a π = 3 2 π P(A)=\frac{2l}{a\pi}=\frac{3}{2\pi} P(A)=2l=2π3精确到万分位的近似值。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:解2-维几何概型问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1097636

相关文章

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟