概率统计Python计算:假设检验应用——基于成对数据的检验

2024-08-22 22:48

本文主要是介绍概率统计Python计算:假设检验应用——基于成对数据的检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
设有 n n n个相互独立的观测结果 ( X 1 , Y 1 ) (X_1,Y_1) (X1,Y1) ( X 2 , Y 2 ) (X_2,Y_2) (X2,Y2) ⋯ \cdots ( X n , Y n ) (X_n,Y_n) (Xn,Yn),诸对 X i X_i Xi Y i Y_i Yi受同一因素影响, D i = X i − Y i D_i=X_i-Y_i Di=XiYi~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , n N(\mu,\sigma^2),i=1,2,\cdots,n N(μ,σ2),i=1,2,,n。其中 μ \mu μ σ 2 \sigma^2 σ2均未知。在指定显著水平 α \alpha α下,检验假设
H 0 : μ = μ 0 ( H 1 : μ ≠ μ 0 ) 或 H 0 : μ ≤ μ 0 ( H 1 : μ > μ 0 ) 或 H 0 : μ ≥ μ 0 ( H 1 : μ < μ 0 ) . H_0:\mu=\mu_0(H_1:\mu\not=\mu_0)\text{或}\\H_0:\mu\leq\mu_0(H_1:\mu>\mu_0)\text{或} \\H_0:\mu\geq\mu_0(H_1:\mu<\mu_0). H0:μ=μ0(H1:μ=μ0)H0:μμ0(H1:μ>μ0)H0:μμ0(H1:μ<μ0).
的问题,称为基于成对数据的检验问题。由于 D i D_i Di~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , n N(\mu,\sigma^2),i=1,2,\cdots,n N(μ,σ2),i=1,2,,n,且 σ 2 \sigma^2 σ2未知,故可用 t t t检验法解决基于成对数据的检验问题。
由于 D i = X i − Y i D_i=X_i-Y_i Di=XiYi~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,,n,其中 σ 2 \sigma^2 σ2未知。在显著水平 α = 0.05 \alpha=0.05 α=0.05下,为检验假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0(或 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0 H 0 : μ ≥ μ 0 H_0:\mu\geq\mu_0 H0:μμ0),scipy.stats包提供了函数
ttest_1samp(a, popmean, alternative=’two-sided’) \text{ttest\_1samp(a, popmean, alternative='two-sided')} ttest_1samp(a, popmean, alternative=’two-sided’)
其参数a表示序列 { d 1 = x 1 − y 1 , d 2 = x 2 − y 2 , ⋯ , d n = x n − y n } \{d_1=x_1-y_1,d_2=x_2-y_2,\cdots,d_n=x_n-y_n\} {d1=x1y1,d2=x2y2,,dn=xnyn},popmean表示 μ \mu μ的假设值 μ 0 \mu_0 μ0,alternative为三个选项之一’two-sided’,‘greater’或’less’,分别表示双侧假设、右侧假设及左侧假设,缺省值为表示双侧假设的’two-sided’。该函数的返回值包括两个数据:表示检验统计量值 d ‾ − μ 0 s / n \frac{\overline{d}-\mu_0}{s/\sqrt{n}} s/n dμ0的statistic和表示检验p值的pvalue。
例1将双胞胎分开来抚养,一个由父母亲自带大,另一个不是由父母亲自带大。现取14对双胞胎测试他们的智商,智商测试得分如下:

序号1234567891011121314
父母带大 X i X_i Xi2331251819252818252822143436
非父母带大 Y i Y_i Yi2231292428312715232726193028

希望比较两种不同的成长环境是否对孩子的智商有不同的影响。
解: 首先,注意到表中数据是成对出现的,14对双胞胎的智商 ( X i , Y i ) , i = 1 , 2 , ⋯ , 14 (X_i,Y_i),i=1,2,\cdots,14 (Xi,Yi),i=1,2,,14,任何两对双胞胎的成长过程互不影响,故可以认为是相互独立的。同一家庭的双胞胎孩子的智商 X i X_i Xi Y i Y_i Yi应当由某种联系。为考察一对双胞胎的不同成长环境对智商的影响,考虑两者的差 D i = X i − Y i , i = 1 , 2 , ⋯ , 14 D_i=X_i-Y_i,i=1,2,\cdots,14 Di=XiYi,i=1,2,,14。由于诸 D i D_i Di均受同样因素(孩子的成长环境)影响,故可认为具有相同的分布。假定 D i D_i Di~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , 14 N(\mu,\sigma^2),i=1,2,\cdots,14 N(μ,σ2),i=1,2,,14(由诸 ( X i , Y i ) (X_i,Y_i) (Xi,Yi)的相互独立性,知诸 D i D_i Di也是相互独立的),本例即是需要在一定的显著水平 α \alpha α下检验假设
H 0 : μ = 0 ( H 1 : μ ≠ 0 ) . H_0:\mu=0(H_1:\mu\not=0). H0:μ=0(H1:μ=0).
下列代码完成例7-26中对双侧假设 H 0 H_0 H0在显著水平 α = 0.05 \alpha=0.05 α=0.05下的检验计算。

import numpy as np                      #导入numpy
from scipy.stats import ttest_1samp     #导入ttest_1samp
x=np.array([23, 31, 25, 18, 19, 25, 28, #设置样本数据18, 25, 28, 22, 14, 34, 36])
y=np.array([22, 31, 29, 24, 28, 31, 27,15, 23, 27, 26, 19, 30, 28])
alpha=0.05                              #显著水平
d=x-y                                   #计算di=xi-yi
_,pvalue=ttest_1samp(d, 0)              #计算检验p值
print('mu=0 is %s.'%(pvalue>=alpha))

程序的第3~7行按题面设置各项数据。第8行计算序列 d = { d 1 = x 1 − y 1 , d 2 = x 2 − y 2 , ⋯ , d n = x n − y n } d=\{d_1=x_1-y_1,d_2=x_2-y_2,\cdots,d_n=x_n-y_n\} d={d1=x1y1,d2=x2y2,,dn=xnyn},记为d。第9行调用函数ttest_1samp计算检验假设 H 0 H_0 H0的p值(由于此处不需要检验统计量值,故用下划线’_'将返回值中的statistic屏蔽掉),第10行计算检验并输出。

mu=0 is True.

表示接受假设 H 0 : μ = 0 H_0:\mu=0 H0:μ=0,即生长环境对孩子的智商没有显著影响。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:假设检验应用——基于成对数据的检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097620

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买