概率统计Python计算:假设检验应用——基于成对数据的检验

2024-08-22 22:48

本文主要是介绍概率统计Python计算:假设检验应用——基于成对数据的检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
设有 n n n个相互独立的观测结果 ( X 1 , Y 1 ) (X_1,Y_1) (X1,Y1) ( X 2 , Y 2 ) (X_2,Y_2) (X2,Y2) ⋯ \cdots ( X n , Y n ) (X_n,Y_n) (Xn,Yn),诸对 X i X_i Xi Y i Y_i Yi受同一因素影响, D i = X i − Y i D_i=X_i-Y_i Di=XiYi~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , n N(\mu,\sigma^2),i=1,2,\cdots,n N(μ,σ2),i=1,2,,n。其中 μ \mu μ σ 2 \sigma^2 σ2均未知。在指定显著水平 α \alpha α下,检验假设
H 0 : μ = μ 0 ( H 1 : μ ≠ μ 0 ) 或 H 0 : μ ≤ μ 0 ( H 1 : μ > μ 0 ) 或 H 0 : μ ≥ μ 0 ( H 1 : μ < μ 0 ) . H_0:\mu=\mu_0(H_1:\mu\not=\mu_0)\text{或}\\H_0:\mu\leq\mu_0(H_1:\mu>\mu_0)\text{或} \\H_0:\mu\geq\mu_0(H_1:\mu<\mu_0). H0:μ=μ0(H1:μ=μ0)H0:μμ0(H1:μ>μ0)H0:μμ0(H1:μ<μ0).
的问题,称为基于成对数据的检验问题。由于 D i D_i Di~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , n N(\mu,\sigma^2),i=1,2,\cdots,n N(μ,σ2),i=1,2,,n,且 σ 2 \sigma^2 σ2未知,故可用 t t t检验法解决基于成对数据的检验问题。
由于 D i = X i − Y i D_i=X_i-Y_i Di=XiYi~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,,n,其中 σ 2 \sigma^2 σ2未知。在显著水平 α = 0.05 \alpha=0.05 α=0.05下,为检验假设 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0(或 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0 H 0 : μ ≥ μ 0 H_0:\mu\geq\mu_0 H0:μμ0),scipy.stats包提供了函数
ttest_1samp(a, popmean, alternative=’two-sided’) \text{ttest\_1samp(a, popmean, alternative='two-sided')} ttest_1samp(a, popmean, alternative=’two-sided’)
其参数a表示序列 { d 1 = x 1 − y 1 , d 2 = x 2 − y 2 , ⋯ , d n = x n − y n } \{d_1=x_1-y_1,d_2=x_2-y_2,\cdots,d_n=x_n-y_n\} {d1=x1y1,d2=x2y2,,dn=xnyn},popmean表示 μ \mu μ的假设值 μ 0 \mu_0 μ0,alternative为三个选项之一’two-sided’,‘greater’或’less’,分别表示双侧假设、右侧假设及左侧假设,缺省值为表示双侧假设的’two-sided’。该函数的返回值包括两个数据:表示检验统计量值 d ‾ − μ 0 s / n \frac{\overline{d}-\mu_0}{s/\sqrt{n}} s/n dμ0的statistic和表示检验p值的pvalue。
例1将双胞胎分开来抚养,一个由父母亲自带大,另一个不是由父母亲自带大。现取14对双胞胎测试他们的智商,智商测试得分如下:

序号1234567891011121314
父母带大 X i X_i Xi2331251819252818252822143436
非父母带大 Y i Y_i Yi2231292428312715232726193028

希望比较两种不同的成长环境是否对孩子的智商有不同的影响。
解: 首先,注意到表中数据是成对出现的,14对双胞胎的智商 ( X i , Y i ) , i = 1 , 2 , ⋯ , 14 (X_i,Y_i),i=1,2,\cdots,14 (Xi,Yi),i=1,2,,14,任何两对双胞胎的成长过程互不影响,故可以认为是相互独立的。同一家庭的双胞胎孩子的智商 X i X_i Xi Y i Y_i Yi应当由某种联系。为考察一对双胞胎的不同成长环境对智商的影响,考虑两者的差 D i = X i − Y i , i = 1 , 2 , ⋯ , 14 D_i=X_i-Y_i,i=1,2,\cdots,14 Di=XiYi,i=1,2,,14。由于诸 D i D_i Di均受同样因素(孩子的成长环境)影响,故可认为具有相同的分布。假定 D i D_i Di~ N ( μ , σ 2 ) , i = 1 , 2 , ⋯ , 14 N(\mu,\sigma^2),i=1,2,\cdots,14 N(μ,σ2),i=1,2,,14(由诸 ( X i , Y i ) (X_i,Y_i) (Xi,Yi)的相互独立性,知诸 D i D_i Di也是相互独立的),本例即是需要在一定的显著水平 α \alpha α下检验假设
H 0 : μ = 0 ( H 1 : μ ≠ 0 ) . H_0:\mu=0(H_1:\mu\not=0). H0:μ=0(H1:μ=0).
下列代码完成例7-26中对双侧假设 H 0 H_0 H0在显著水平 α = 0.05 \alpha=0.05 α=0.05下的检验计算。

import numpy as np                      #导入numpy
from scipy.stats import ttest_1samp     #导入ttest_1samp
x=np.array([23, 31, 25, 18, 19, 25, 28, #设置样本数据18, 25, 28, 22, 14, 34, 36])
y=np.array([22, 31, 29, 24, 28, 31, 27,15, 23, 27, 26, 19, 30, 28])
alpha=0.05                              #显著水平
d=x-y                                   #计算di=xi-yi
_,pvalue=ttest_1samp(d, 0)              #计算检验p值
print('mu=0 is %s.'%(pvalue>=alpha))

程序的第3~7行按题面设置各项数据。第8行计算序列 d = { d 1 = x 1 − y 1 , d 2 = x 2 − y 2 , ⋯ , d n = x n − y n } d=\{d_1=x_1-y_1,d_2=x_2-y_2,\cdots,d_n=x_n-y_n\} d={d1=x1y1,d2=x2y2,,dn=xnyn},记为d。第9行调用函数ttest_1samp计算检验假设 H 0 H_0 H0的p值(由于此处不需要检验统计量值,故用下划线’_'将返回值中的statistic屏蔽掉),第10行计算检验并输出。

mu=0 is True.

表示接受假设 H 0 : μ = 0 H_0:\mu=0 H0:μ=0,即生长环境对孩子的智商没有显著影响。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:假设检验应用——基于成对数据的检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097620

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格