概率统计Python计算:一元线性回归应用——控制

2024-08-22 22:48

本文主要是介绍概率统计Python计算:一元线性回归应用——控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对一元线性回归模型 x = { x 1 , x 2 , ⋯ , x n } x=\{x_1,x_2,\cdots,x_n\} x={x1,x2,,xn} Y = { Y 1 , Y 2 , ⋯ , Y n } Y=\{Y_1,Y_2,\cdots,Y_n\} Y={Y1,Y2,,Yn} Y i Y_i Yi~ N ( a x i + b , σ 2 ) , i = 1 , 2 , ⋯ , n N(ax_i+b, \sigma^2),i=1,2,\cdots,n N(axi+b,σ2)i=1,2,,n,若算得参数 a a a b b b σ 2 \sigma^2 σ2的估计量 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2。对给定的置信水平 1 − α 1-\alpha 1α以及与诸 Y i , i = 1 , 2 , ⋯ , n Y_i,i=1,2,\cdots,n Yi,i=1,2,,n独立的随机变量 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2)的某个取值范围 Ω \Omega Ω,寻求使得
P ( Y ∈ Ω ) ≥ 1 − α P(Y\in\Omega)\geq1-\alpha P(YΩ)1α
成立的 x x x构成的集合其上(下)界的估计量问题,称为控制问题
例1设炼铝厂所产铸模的抗张强度与所用铝的硬度有关。设当铝的硬度为 x x x时,抗张强度 Y Y Y~ N ( a x + b , σ 2 ) N(ax+b,\sigma^2) N(ax+b,σ2),其中 a a a b b b σ 2 \sigma^2 σ2均未知。对于一系列的 x x x值,测得相应的抗张强度如下表
硬度 x : 51 , 53 , 60 , 64 , 68 , 70 , 70 , 72 , 83 , 84 抗张强度 Y : 283 , 293 , 290 , 256 , 288 , 349 , 340 , 354 , 324 , 343 \text{硬度}x: 51,53,60,64,68,70,70,72,83,84\\ \text{抗张强度}Y: 283,293,290,256,288,349,340,354,324,343 硬度x:51,53,60,64,68,70,70,72,83,84抗张强度Y:283,293,290,256,288,349,340,354,324,343
要求铸模的抗张强度 Y Y Y的值介于260~340之间,则铝材的硬度应如何控制(置信水平 1 − α = 0.95 1-\alpha=0.95 1α=0.95)?就是一个典型的控制问题。
由于 Y − a x − b σ \frac{Y-{a}x-{b}}{{\sigma}} σYaxb~ N ( 0 , 1 ) N(0, 1) N(0,1),用 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b σ 2 ∧ \stackrel{\wedge}{\sigma^2} σ2替代 a a a b b b σ 2 \sigma^2 σ2 Y − a ∧ x − b ∧ σ ∧ \frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}} σYaxb近似服从 N ( 0 , 1 ) N(0,1) N(0,1)。对于 Ω = ( y ∗ , y ∗ ∗ ) \Omega=(y^*, y^{**}) Ω=(y,y∗∗)的情形,其中 y ∗ y^* y y ∗ ∗ y^{**} y∗∗为实数,且满足 y ∗ ∗ − y ∗ > 2 z α / 2 σ ∧ y^{**}-y^*>2z_{\alpha/2}\stackrel{\wedge}{\sigma} y∗∗y>2zα/2σ,则必有
P ( y ∗ < Y < y ∗ ∗ ) = P ( y ∗ − a ∧ x − b ∧ σ ∧ < Y − a ∧ x − b ∧ σ ∧ < y ∗ ∗ − a ∧ x − b ∧ σ ∧ ) . P(y^*<Y<y^{**})=P\left(\frac{y^*-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<\frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<\frac{y^{**}-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\right). P(y<Y<y∗∗)=P σyaxb<σYaxb<σy∗∗axb .
解不等式 y ∗ − a ∧ x − b ∧ σ ∧ ≤ − z α / 2 \frac{y^*-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\leq-z_{\alpha/2} σyaxbzα/2 x ∗ = 1 a ∧ ( y ∗ − b ∧ + z α / 2 σ ∧ ) x^*=\frac{1}{\stackrel{\wedge}{a}}(y^*-\stackrel{\wedge}{b}+z_{\alpha/2}\stackrel{\wedge}{\sigma}) x=a1(yb+zα/2σ),解 y ∗ ∗ − a ∧ x − b ∧ σ ∧ ≥ z α / 2 \frac{y^{**}-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\geq z_{\alpha/2} σy∗∗axbzα/2 x ∗ ∗ = 1 a ∧ ( y ∗ ∗ − b ∧ − z α / 2 σ ∧ ) x^{**}=\frac{1}{\stackrel{\wedge}{a}}(y^{**}-\stackrel{\wedge}{b}-z_{\alpha/2}\stackrel{\wedge}{\sigma}) x∗∗=a1(y∗∗bzα/2σ)。则
P ( y ∗ < Y < y ∗ ∗ ) = P ( y ∗ − a ∧ x ∗ − b ∧ σ ∧ ≤ − z α / 2 < Y − a ∧ x − b ∧ σ ∧ < z α / 2 ≤ y ∗ ∗ − a ∧ x ∗ ∗ − b ∧ σ ∧ ) ≥ 1 − α . P(y^*<Y<y^{**})=P\left(\frac{y^*-\stackrel{\wedge}{a}x^*-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\leq-z_{\alpha/2}<\frac{Y-\stackrel{\wedge}{a}x-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}<z_{\alpha/2}\leq\frac{y^{**}-\stackrel{\wedge}{a}x^{**}-\stackrel{\wedge}{b}}{\stackrel{\wedge}{\sigma}}\right)\geq1-\alpha. P(y<Y<y∗∗)=P σyaxbzα/2<σYaxb<zα/2σy∗∗ax∗∗b 1α.
于是,欲使 y ∗ < Y < y ∗ ∗ y^*<Y<y^{**} y<Y<y∗∗,在置信水平 1 − α 1-\alpha 1α下,需控制 x ∈ ( x ∗ , x ∗ ∗ ) x\in(x^*, x^{**}) x(x,x∗∗) a ∧ > 0 \stackrel{\wedge}{a}>0 a>0)或 x ∈ ( x ∗ ∗ , x ∗ ) x\in(x^{**},x^*) x(x∗∗,x) a ∧ < 0 \stackrel{\wedge}{a}<0 a<0)。将上述思想写成如下代码。

from scipy.stats import norm                        #导入norm
def control(a, b, s, y1, y2, alpha):              	#函数定义z1,z2=norm.interval(1-alpha)                    #N(0,1)的双侧分位点c1=y1-b                                         #y*-bc2=y2-b                                         #y**-bdy1=z1*s                                        #z1*sdy2=z2*s                                        #z2*sp1=(c1-dy1)/a                                   #关于y*的端点p2=(c2-dy2)/a                                   #关于y**的端点if p2<p1:                                       #确定左右端点(p1,p2)=(p2,p1)return (p1, p2)

程序的第3行计算标准正态分布对应 1 − α 1-\alpha 1α的双侧分位点 − z α / 2 -z_{\alpha/2} zα/2 z α / 2 z_{\alpha/2} zα/2,记为z1和z2。第4、5行分别计算 y ∗ − b ∧ y^*-\stackrel{\wedge}{b} yb y ∗ ∗ − b ∧ y^{**}-\stackrel{\wedge}{b} y∗∗b,记为c1和c2。第6、7行分别计算 − z α / 2 σ ∧ -z_{\alpha/2}\stackrel{\wedge}{\sigma} zα/2σ z α / 2 σ ∧ z_{\alpha/2}\stackrel{\wedge}{\sigma} zα/2σ,记为dy1和dy2。第8、9行分别计算 1 a ∧ ( y ∗ − b ∧ + z α / 2 σ ∧ ) \frac{1}{\stackrel{\wedge}{a}}(y^*-\stackrel{\wedge}{b}+z_{\alpha/2}\stackrel{\wedge}{\sigma}) a1(yb+zα/2σ) 1 a ∧ ( y ∗ ∗ − b ∧ − z α / 2 σ ∧ ) \frac{1}{\stackrel{\wedge}{a}}(y^{**}-\stackrel{\wedge}{b}-z_{\alpha/2}\stackrel{\wedge}{\sigma}) a1(y∗∗bzα/2σ),记为p1和p2。第10~11行的if语句确定控制区间的左、右端点。需要提醒的是,调用函数control前需自行检验 y ∗ ∗ − y ∗ > 2 z α / 2 σ ∧ y^{**}-y^*>2z_{\alpha/2}\stackrel{\wedge}{\sigma} y∗∗y>2zα/2σ。下列代码完成例1的计算。

import numpy as np                          				#导入numpy
from scipy.stats import linregress          				#导入linregress
alpha=0.05                                  				#设置数据
y1=260
y2=340
x=np.array([51, 53, 60, 64, 68, 70, 70, 72, 83, 84])
y=np.array([283, 293, 290, 286, 288, 349, 340, 354, 324, 343])
n=x.size                                    				#样本容量
x_bar=x.mean()                              				#x数据均值
lxx=((x-x_bar)**2).sum()                    				#lxx
res=linregress(x, y)                        				#调用linregress
a=res.slope                                 				#读取a
b=res.intercept                             				#读取b
s=res.stderr*np.sqrt((n-2)*lxx/n)           				#计算s
print('x in (%.0f, %.0f)'%control(a, b, s, y1, y2, alpha))	#计算控制区间

程序的第3~7行设置原始数据。第9行计算样本容量 n n n,第9行计算 x x x的数据均值 x ‾ \overline{x} x记为x_bar。第10行计算 l x x = ∑ i = 1 n ( x i − x ‾ ) l_{xx}=\sum\limits_{i=1}^n(x_i-\overline{x}) lxx=i=1n(xix)记为lxx。第11行调用函数linregress计算一元回归分析,返回值记为res。第12、13行分别读取 a ∧ \stackrel{\wedge}{a} a b ∧ \stackrel{\wedge}{b} b,记为a和b。第14行利用res的字段stderr( = n σ 2 ∧ ( n − 2 ) l x x =\sqrt{\frac{n\stackrel{\wedge}{\sigma^2}}{(n-2)l_{xx}}} =(n2)lxxnσ2 )乘以 ( n − 2 ) l x x n \sqrt{\frac{(n-2)l_{xx}}{n}} n(n2)lxx ,计算 σ ∧ \stackrel{\wedge}{\sigma} σ记为s。第15行调用函数contol计算 260 < Y < 340 260<Y<340 260<Y<340的控制区间并输出。运行程序,输出

x in (59, 60)

即若要求铸模的抗张强度 Y Y Y的值介于260~340之间,则铝材的硬度应控制在(59, 60)范围内。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:一元线性回归应用——控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097618

相关文章

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.