概率统计Python计算:双因素无重复试验方差分析

2024-08-22 22:48

本文主要是介绍概率统计Python计算:双因素无重复试验方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
双因素无重复试验方差分析的数据模型 X X X是一个 r × s r\times s r×s的矩阵, X i j X_{ij} Xij~ N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2)。令 X ‾ = 1 r s ∑ i = 1 r ∑ j = 1 s X i j \overline{X}=\frac{1}{rs}\sum\limits_{i=1}^r\sum\limits_{j=1}^{s}X_{ij} X=rs1i=1rj=1sXij X ‾ i ⋅ = 1 r ∑ j = 1 s X i j \overline{X}_{i\cdot}=\frac{1}{r}\sum\limits_{j=1}^{s}X_{ij} Xi=r1j=1sXij X ‾ ⋅ j = 1 r ∑ i = 1 r X i j \overline{X}_{\cdot j}=\frac{1}{r}\sum\limits_{i=1}^{r}X_{ij} Xj=r1i=1rXij i = 1 , 2 , ⋅ , r , j = 1 , 2 , ⋯ , s i=1,2,\cdot,r,j=1,2,\cdots,s i=1,2,,r,j=1,2,,s。与双因素等重复试验方差分析相仿,样本数据总变差 S T = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ ) 2 S_T=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X})^2 ST=i=1rj=1s(XijX)2,可分解为因素 A A A的效应平方和 S A = s ∑ i = 1 r ( X ‾ i ⋅ − X ‾ ) 2 S_A=s\sum\limits_{i=1}^{r}(\overline{X}_{i\cdot}-\overline{X})^2 SA=si=1r(XiX)2,因素 B B B的效应平方和 S B = r ∑ j = 1 s ( X ‾ ⋅ j − X ‾ ) 2 S_B=r\sum\limits_{j=1}^{s}(\overline{X}_{\cdot j}-\overline{X})^2 SB=rj=1s(XjX)2,误差平方和 S E = ∑ i = 1 r ∑ j = 1 s ( X i j − X ‾ i ⋅ − X ‾ ⋅ j + X ‾ ) 2 S_E=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(X_{ij}-\overline{X}_{i\cdot}-\overline{X}_{\cdot j}+\overline{X})^2 SE=i=1rj=1s(XijXiXj+X)2之和,即
S T = S A + S B + S E . S_T=S_A+S_B+S_E. ST=SA+SB+SE.
利用这些数据,希望在显著水平 α \alpha α下检验假设
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , r , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , s . H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,r,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,s. H01:μiμ=0,i=1,2,,r,H02:μjμ=0,j=1,2,,s.
其中, μ i ⋅ = 1 s ∑ j = 1 s μ i j , i = 1 , 2 , ⋯ , r \mu_{i\cdot}=\frac{1}{s}\sum\limits_{j=1}^s\mu_{ij}, i=1,2,\cdots,r μi=s1j=1sμij,i=1,2,,r μ ⋅ j = ∑ i = 1 r μ i j , j = 1 , 2 , ⋯ , s \mu_{\cdot j}=\sum\limits_{i=1}^r\mu_{ij},j=1,2,\cdots,s μj=i=1rμij,j=1,2,,s μ = 1 r s ∑ i = 1 r ∑ j = 1 s μ i j \mu=\frac{1}{rs}\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}\mu_{ij} μ=rs1i=1rj=1sμij
下列代码定义计算双因素无重复试验方差分析的函数。

def dfeVarAnal1(X, alpha):r,s=X.shape									#模型数据结构Xi_bar=X.mean(axis=1).reshape(r, 1)			#A因素样本均值Xj_bar=X.mean(axis=0).reshape(1, s)			#B因素样本均值Xt_bar=X.mean()								#样本总均值ST=((X-Xt_bar)**2).sum()					#总变差SA=s*((Xi_bar-Xt_bar)**2).sum()				#A效应平方和SB=r*((Xj_bar-Xt_bar)**2).sum()				#B效应平方和SE=ST-SA-SB									#误差平方和F1=(s-1)*SA/SE								#H01检验统计量值accept1=ftestR(F1, r-1, (r-1)*(s-1), alpha)	#检验H01F2=(r-1)*SB/SE								#H02检验统计量值accept2=ftestR(F2, s-1, (r-1)*(s-1), alpha)	#检验H02return (accept1, accept2)

函数dfeVarAnal1的参数X表示双因素无重复试验方差分析的数据模型 X X X,alpha表示显著水平 α \alpha α。第2行计算数据模型的结构行数s,列数t。第3行计算因素A的各个水平对应的样本均值 ( X ‾ 1 ⋅ , X ‾ 2 ⋅ , ⋯ , X ‾ r ⋅ ) T (\overline{X}_{1\cdot},\overline{X}_{2\cdot},\cdots,\overline{X}_{r\cdot})^T (X1,X2,,Xr)T,第4行计算因素B各水平对应的样本均值 ( X ‾ ⋅ 1 , X ‾ ⋅ 2 , ⋯ , X ‾ ⋅ s ) (\overline{X}_{\cdot1},\overline{X}_{\cdot2},\cdots,\overline{X}_{\cdot s}) (X1,X2,,Xs),第5行计算样本总均值 X ‾ \overline{X} X,第6~9行分别计算 S T S_T ST S A S_A SA S B S_B SB S E S_E SE。第10行计算假设 H 01 H_{01} H01的检验统计量值 S A / ( r − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SA/(r1)~ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F(r-1,(r-1)(s-1)) F(r1,(r1)(s1)),第11行调用函数ftestR计算 H 01 H_{01} H01的右侧检验。第12行计算 H 02 H_{02} H02的检验统计量 S B / ( s − 1 ) S E / ( r − 1 ) ( s − 1 ) \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} SE/(r1)(s1)SB/(s1)~ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F(s-1,(r-1)(s-1)) F(s1,(r1)(s1)),第13行计算 H 02 H_{02} H02的右侧检验。
例1 在四个不同时间,五个不同地点测得空气中的颗粒状物含量( m g / m 3 mg/m^3 mg/m3)如下

地点 B 1 B_1 B1地点 B 2 B_2 B2地点 B 3 B_3 B3地点 B 4 B_4 B4地点 B 5 B_5 B5
时间 A 1 A_1 A17667815651
时间 A 2 A_2 A28269965970
时间 A 3 A_3 A36859675442
时间 A 4 A_4 A46356645837

假定在第 i i i个时间,第 j j j个地点空气中颗粒物含量服从 N ( μ i j , σ 2 ) N(\mu_{ij},\sigma^2) N(μij,σ2) 1 ≤ i ≤ 4 , 1 ≤ j ≤ 5 1\leq i\leq4,1\leq j\leq5 1i4,1j5。试在显著水平 α = 0.05 \alpha=0.05 α=0.05下检验:在不同时间下颗粒物含量的均值有无显著差异,在不同地点下颗粒物含量的均值有无显著差异。
解: 按题意,需在显著水平 α = 0 , 05 \alpha=0,05 α=0,05下检验
H 01 : μ i ⋅ − μ = 0 , i = 1 , 2 , ⋯ , 4 , H 02 : μ ⋅ j − μ = 0 , j = 1 , 2 , ⋯ , 5. H_{01}:\mu_{i\cdot}-\mu=0,i=1,2,\cdots,4,\\ H_{02}:\mu_{\cdot j}-\mu=0,j=1,2,\cdots,5. H01:μiμ=0,i=1,2,,4,H02:μjμ=0,j=1,2,,5.
下列代码完成本例计算。

import numpy as np					#导入numpy
alpha=0.05							#显著水平
X=np.array([[76, 67, 81, 56, 51],	#试验样本数据[82, 69, 96, 59, 70],[68, 59, 67, 54, 42],[63, 56, 64, 58, 37]])
H0=dfeVarAnal1(X, alpha)			#双因素无重复试验方差分析
print(H0)

运行程序,输出

(False, False)

表示拒绝假设 H 01 H_{01} H01 H 02 H_{02} H02。即时间和地点都显著地影响空气中的颗粒物含量。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:双因素无重复试验方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097615

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚