在苹果设备上运行Stable Diffusion模型

2024-08-22 17:52

本文主要是介绍在苹果设备上运行Stable Diffusion模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在苹果设备上运行Stable Diffusion模型

本文介绍了在苹果设备(MAC、iPad、iPhone)上运行Stable Diffusion模型的方法,包括模型的下载、格式转换以及如何在Swift中调用模型进行推理。

模型类别

首先要下载模型,Stable Diffusion模型可以在huggingface或者Civitai下载到。但是在这两个网站上下载的模型可能会有三种格式。

CoreML格式

这种类别的模型较少,文件主要以.mlmodelc.mlmodel为主,其文件结构大致为:

├── TextEncoder.mlmodelc
├── TextEncoder2.mlmodelc
├── Unet.mlmodelc
├── VAEDecoder.mlmodelc
├── merges.txt
└── vocab.json

Diffusers格式

huggingface上下载的模型大多是这种类型,其文件结构大致为:

├── model_index.json
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
│   └── pytorch_model.bin
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── unet
│   ├── config.json
│   └── diffusion_pytorch_model.bin
└── vae├── config.json└── diffusion_pytorch_model.bin

safetensors格式

Civitai网站下载的大多是这种格式,就一个文件,非常方便。

模型转换

接下来,需要把下载下来的模型都转成CoreML格式,如果你在第一步下载的模型已经是CoreML格式,那么这一步就可以跳过。

Diffusers格式转CoreML格式

首先下载该仓库代码:ml-stable-diffusion。查看System Requirements检查自己的设备是否支持。然后安装依赖:

pip install -r requirements.txt

找到torch2coreml.py文件,执行以下命令:

python torch2coreml.py \
--bundle-resources-for-swift-cli \
--xl-version \
--convert-unet \
--convert-text-encoder \
--convert-vae-decoder \
--attention-implementation ORIGINAL \
--model-version /your/model/path \
-o /your/model/output/path

注意有个参数--xl-version,如果模型是sdxl类型的,就加上,否则把这行删除。另外如果你的模型支持图生图,你可以加上--convert-vae-encoder参数。

运行完该命令,应该在你指定的目录生成了文件,在Resources目录下的文件就是转换好的CoreML格式。

safetensors格式转Diffusers格式

首先下载该仓库代码:Diffusers。然后安装依赖:

pip install --upgrade diffusers

找到convert_original_stable_diffusion_to_diffusers.py文件并执行以下命令:

python convert_original_stable_diffusion_to_diffusers.py \
--checkpoint_path /your/model/path \
--dump_path /your/model/output/path \
--from_safetensors \
--half \
--device mps

这里--half表示转换时精度为fp16--device mps表示模型使用mps(GPU)进行推理。

运行完该命令,会生成Diffusers格式的模型,再利用Diffusers格式转CoreML格式的步骤,将模型转换为CoreML格式。

Swift调用Stable Diffusion模型

使用Huggingface提供的swift-coreml-diffusers库。

import StableDiffusion
import CoreML// 初始化CoreML配置
let config = MLModelConfiguration()
// 运行在GPU上(MAC限定)
config.computeUnits = MLComputeUnits.cpuAndGPU
// 初始化pipeline
var pipeline = try StableDiffusionPipeline(resourcesAt: modelDirectory,controlNet: [],configuration: config,reduceMemory: diffusersConfig.reduceMemory)
let pipeline.loadResources()
// 初始化图片推理配置
var pipelineConfig = StableDiffusionPipeline.Configuration(prompt: prompt)
pipelineConfig.stepCount = stepCount
pipelineConfig.guidanceScale = cfgScale
pipelineConfig.schedulerType = scheduler
// 开始图片推理
let images = try pipeline.generateImages(configuration: pipelineConfig,progressHandler: { progress in
})

我的AquariusAI项目提供了示例代码。

最后

那到底什么是CoreML呢?

Core ML 是Apple Silicon芯片产品(包括macOS、iOS、watchOS 和 tvOS)中使用的机器学习框架,用于执行快速预测或推理,在边缘轻松集成预训练的机器学习模型,从而可以对设备上的实时图像或视频进行实时预测。

Core ML 通过利用 CPU、GPU 和 神经网络引擎 ,同时最大程度地减小内存占用空间和功耗,来优化设备端性能。 由于模型严格地在用户设备上,因此无需任何网络连接,这有助于保护用户数据的私密性和 App 的响应速度。

简而言之,如果你的模型运行在Silicon芯片的苹果设备上,利用Core ML可以获得更快的性能和更低的内存及能耗。


本文首发于:https://babyno.top/posts/2024/06/run-the-stable-diffusion-model-on-apple-devices/

欢迎关注我的公众号“机器人小不”,原创技术文章第一时间推送。

这篇关于在苹果设备上运行Stable Diffusion模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096981

相关文章

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

eclipse如何运行springboot项目

《eclipse如何运行springboot项目》:本文主要介绍eclipse如何运行springboot项目问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目js录当在eclipse启动spring boot项目时出现问题解决办法1.通过cmd命令行2.在ecl