Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析

本文主要是介绍Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 版本选择
  • 安装
  • 配置
    • Java环境配置
    • Hadoop配置
    • Spark配置
  • 安装pyspark
  • 使用Jupyter Notebook进行Spark+ MongoDB测试
  • 参考

版本选择

根据Spark Connector:org.mongodb.spark:mongo-spark-connector_2.13:10.3.0 的前提要求
在这里插入图片描述
这里选择使用最新的MongoDB 7.0.12社区版
https://www.mongodb.com/try/download/community

Spark使用最新的3.5.2
https://dlcdn.apache.org/spark/spark-3.5.2/spark-3.5.2-bin-hadoop3.tgz
官网下载比较慢,可以从阿里镜像源下载:
https://mirrors.aliyun.com/apache/spark/spark-3.5.2/?spm=a2c6h.25603864.0.0.52d721049dSJJZ
在这里插入图片描述

Java使用Java8最新更新
https://www.oracle.com/cn/java/technologies/javase/javase8u211-later-archive-downloads.html

PySpark 一般会与 Hadoop 环境一起运行 , 如果在 Windows 中没有安装 Hadoop 运行环境 , 就会报错误 ;
Hadoop 发布版本在https://hadoop.apache.org/releases.html 页面可下载 ;
官网下载比较慢,可以从阿里镜像源下载:
https://mirrors.aliyun.com/apache/hadoop/common/hadoop-3.3.6/

winutils.exe是一个Windows平台上的实用工具,它是Apache Hadoop项目的一部分。Apache Hadoop是一个开源的分布式计算框架,用于处理大规模数据集的分布式存储和处理。winutils.exe主要用于在Windows环境下运行Hadoop相关的任务和操作。

winutils可以从如下github仓库下载:
https://github.com/cdarlint/winutils
在这里插入图片描述
由于winutils最新只支持hadoop-3.3.6,所以上面Hadoop下载的也是这个版本而不是最新版;

都下载后如下图
在这里插入图片描述

安装

mongodb和jdk直接按默认选项安装即可。

配置

Java环境配置

参考文章:Windows如何安装JDK
来自 https://blog.csdn.net/lcl17779740668/article/details/137992141?spm=1001.2014.3001.5502

Win+R键打开运行窗口,输入cmd,命令行串口输入java -version验证是否安装成功。

Hadoop配置

Hadoop下载后,解压即可,然后记录解压后的路径并配置环境变量
系统变量创建HADOOP_HOME变量值:hadoop安装的路径
系统变量中的Path添加:%HADOOP_HOME%\bin

将上面下载的winutils中的hadoop-3.3.6/bin文件夹下的所有文件复制到对应%HADOOP_HOME%\bin文件夹中并替换原有文件。

Win+R键打开运行窗口,输入cmd,命令行串口输入hadoop -version验证是否安装成功。

可能遇到的报错:“Error JAVA_HOME is incorrectly set.”
根因:JAVA_HOME的值有空格
解决方式一:修改系统环境变量C:\Program Files\Java\jdk-1.8为:C:\Progra~1\Java\jdk-1.8
解决方式二:直接更改hadoop对应etc\hadoop\hadoop-env.cmd 脚本中的 JAVA_HOME 为C:\Progra~1\Java\jdk-1.8
在这里插入图片描述
参考:DOS命令空格问题解决办法
来自 https://blog.csdn.net/youdaodao/article/details/89473558

Spark配置

Spark下载后,解压即可,然后记录解压后的路径并配置环境变量
新建系统变量》变量名:SPARK_HOME 变量值:spark安装的路径

系统变量path中新建两个变量值 %SPARK_HOME%\bin %SPARK_HOME%\sbin

Win+R键打开运行窗口,输入cmd,命令行串口输入spark-shell检查spark是否安装成功

安装pyspark

python环境使用的是python 3.8.10
pip install pyspark
在这里插入图片描述

使用Jupyter Notebook进行Spark+ MongoDB测试

from pyspark.sql import SparkSessionmy_spark = SparkSession \.builder \.appName("myApp") \.config("spark.mongodb.read.connection.uri", "mongodb://localhost:27017/local.startup_log") \.config("spark.mongodb.write.connection.uri", "mongodb://localhost:27017/local.FSHeight") \.config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.13:10.3.0") \.getOrCreate()
dataFrame = my_spark.read.format("mongodb").load()
dataFrame.printSchema()

从local.startup_log读取数据,printSchema输出正常。

dataFrame.show()
dataFrame.count()

以上两个方法均报错:

Py4JJavaError: An error occurred while calling o42.showString.
: java.lang.NoSuchMethodError: org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(Lscala/collection/immutable/Seq;Lorg/apache/spark/sql/catalyst/analysis/Analyzer;)Lorg/apache/spark/sql/catalyst/encoders/ExpressionEncoder;at com.mongodb.spark.sql.connector.schema.SchemaToExpressionEncoderFunction.apply(SchemaToExpressionEncoderFunction.java:97)at com.mongodb.spark.sql.connector.schema.RowToInternalRowFunction.<init>(RowToInternalRowFunction.java:41)at com.mongodb.spark.sql.connector.schema.BsonDocumentToRowConverter.<init>(BsonDocumentToRowConverter.java:100)at com.mongodb.spark.sql.connector.read.MongoBatch.<init>(MongoBatch.java:47)at com.mongodb.spark.sql.connector.read.MongoScan.toBatch(MongoScan.java:79)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.batch$lzycompute(BatchScanExec.scala:45)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.batch(BatchScanExec.scala:45)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.inputPartitions$lzycompute(BatchScanExec.scala:59)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.inputPartitions(BatchScanExec.scala:59)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExecBase.supportsColumnar(DataSourceV2ScanExecBase.scala:179)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExecBase.supportsColumnar$(DataSourceV2ScanExecBase.scala:175)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.supportsColumnar(BatchScanExec.scala:36)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2Strategy.apply(DataSourceV2Strategy.scala:147)at org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$1(QueryPlanner.scala:63)at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486)at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492)at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)

报错对应的是如下位置
在这里插入图片描述
从spark-3.5.2-bin-hadoop3\jars路径下找到了spark-sql_2.12-3.5.2.jar。
解压缩后发现并没有对应的org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind
在这里插入图片描述
根因就在这里
在这里插入图片描述
因为下载的spark编译包中spark-3.5.2-bin-hadoop3\jars都是基于scala 2.12的,
将org.mongodb.spark:mongo-spark-connector_2.13:10.3.0换成org.mongodb.spark:mongo-spark-connector_2.12:10.3.0问题解决

from pyspark.sql import SparkSessionmy_spark = SparkSession \.builder \.appName("myApp") \.config("spark.mongodb.read.connection.uri", "mongodb://localhost:27017/local.startup_log") \.config("spark.mongodb.write.connection.uri", "mongodb://localhost:27017/local.FSHeight") \.config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.13:10.3.0") \.getOrCreate()
# 从上述spark.mongodb.read.connection.uri读取数据    
df = my_spark.read.format("mongodb").load()
# 将读取的数据写入上述spark.mongodb.write.connection.uri,mode可选overwrite or append
df.write.format("mongodb").mode("overwrite").save()
# 重新从数据库读取数据,并查看
dataFrame = my_spark.read\.format("mongodb")\.option("database", "local")\.option("collection", "FSHeight")\.load()
dataFrame.printSchema()
dataFrame.count()
dataFrame.show()

有一个类似案例,也是可能跟spark版本有关系
https://blog.csdn.net/qq_38345222/article/details/88750174

参考

https://www.cnblogs.com/lcl-cn/p/18182316
https://cloud.tencent.com/developer/article/2338486

这篇关于Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096757

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be