Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析

本文主要是介绍Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 版本选择
  • 安装
  • 配置
    • Java环境配置
    • Hadoop配置
    • Spark配置
  • 安装pyspark
  • 使用Jupyter Notebook进行Spark+ MongoDB测试
  • 参考

版本选择

根据Spark Connector:org.mongodb.spark:mongo-spark-connector_2.13:10.3.0 的前提要求
在这里插入图片描述
这里选择使用最新的MongoDB 7.0.12社区版
https://www.mongodb.com/try/download/community

Spark使用最新的3.5.2
https://dlcdn.apache.org/spark/spark-3.5.2/spark-3.5.2-bin-hadoop3.tgz
官网下载比较慢,可以从阿里镜像源下载:
https://mirrors.aliyun.com/apache/spark/spark-3.5.2/?spm=a2c6h.25603864.0.0.52d721049dSJJZ
在这里插入图片描述

Java使用Java8最新更新
https://www.oracle.com/cn/java/technologies/javase/javase8u211-later-archive-downloads.html

PySpark 一般会与 Hadoop 环境一起运行 , 如果在 Windows 中没有安装 Hadoop 运行环境 , 就会报错误 ;
Hadoop 发布版本在https://hadoop.apache.org/releases.html 页面可下载 ;
官网下载比较慢,可以从阿里镜像源下载:
https://mirrors.aliyun.com/apache/hadoop/common/hadoop-3.3.6/

winutils.exe是一个Windows平台上的实用工具,它是Apache Hadoop项目的一部分。Apache Hadoop是一个开源的分布式计算框架,用于处理大规模数据集的分布式存储和处理。winutils.exe主要用于在Windows环境下运行Hadoop相关的任务和操作。

winutils可以从如下github仓库下载:
https://github.com/cdarlint/winutils
在这里插入图片描述
由于winutils最新只支持hadoop-3.3.6,所以上面Hadoop下载的也是这个版本而不是最新版;

都下载后如下图
在这里插入图片描述

安装

mongodb和jdk直接按默认选项安装即可。

配置

Java环境配置

参考文章:Windows如何安装JDK
来自 https://blog.csdn.net/lcl17779740668/article/details/137992141?spm=1001.2014.3001.5502

Win+R键打开运行窗口,输入cmd,命令行串口输入java -version验证是否安装成功。

Hadoop配置

Hadoop下载后,解压即可,然后记录解压后的路径并配置环境变量
系统变量创建HADOOP_HOME变量值:hadoop安装的路径
系统变量中的Path添加:%HADOOP_HOME%\bin

将上面下载的winutils中的hadoop-3.3.6/bin文件夹下的所有文件复制到对应%HADOOP_HOME%\bin文件夹中并替换原有文件。

Win+R键打开运行窗口,输入cmd,命令行串口输入hadoop -version验证是否安装成功。

可能遇到的报错:“Error JAVA_HOME is incorrectly set.”
根因:JAVA_HOME的值有空格
解决方式一:修改系统环境变量C:\Program Files\Java\jdk-1.8为:C:\Progra~1\Java\jdk-1.8
解决方式二:直接更改hadoop对应etc\hadoop\hadoop-env.cmd 脚本中的 JAVA_HOME 为C:\Progra~1\Java\jdk-1.8
在这里插入图片描述
参考:DOS命令空格问题解决办法
来自 https://blog.csdn.net/youdaodao/article/details/89473558

Spark配置

Spark下载后,解压即可,然后记录解压后的路径并配置环境变量
新建系统变量》变量名:SPARK_HOME 变量值:spark安装的路径

系统变量path中新建两个变量值 %SPARK_HOME%\bin %SPARK_HOME%\sbin

Win+R键打开运行窗口,输入cmd,命令行串口输入spark-shell检查spark是否安装成功

安装pyspark

python环境使用的是python 3.8.10
pip install pyspark
在这里插入图片描述

使用Jupyter Notebook进行Spark+ MongoDB测试

from pyspark.sql import SparkSessionmy_spark = SparkSession \.builder \.appName("myApp") \.config("spark.mongodb.read.connection.uri", "mongodb://localhost:27017/local.startup_log") \.config("spark.mongodb.write.connection.uri", "mongodb://localhost:27017/local.FSHeight") \.config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.13:10.3.0") \.getOrCreate()
dataFrame = my_spark.read.format("mongodb").load()
dataFrame.printSchema()

从local.startup_log读取数据,printSchema输出正常。

dataFrame.show()
dataFrame.count()

以上两个方法均报错:

Py4JJavaError: An error occurred while calling o42.showString.
: java.lang.NoSuchMethodError: org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(Lscala/collection/immutable/Seq;Lorg/apache/spark/sql/catalyst/analysis/Analyzer;)Lorg/apache/spark/sql/catalyst/encoders/ExpressionEncoder;at com.mongodb.spark.sql.connector.schema.SchemaToExpressionEncoderFunction.apply(SchemaToExpressionEncoderFunction.java:97)at com.mongodb.spark.sql.connector.schema.RowToInternalRowFunction.<init>(RowToInternalRowFunction.java:41)at com.mongodb.spark.sql.connector.schema.BsonDocumentToRowConverter.<init>(BsonDocumentToRowConverter.java:100)at com.mongodb.spark.sql.connector.read.MongoBatch.<init>(MongoBatch.java:47)at com.mongodb.spark.sql.connector.read.MongoScan.toBatch(MongoScan.java:79)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.batch$lzycompute(BatchScanExec.scala:45)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.batch(BatchScanExec.scala:45)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.inputPartitions$lzycompute(BatchScanExec.scala:59)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.inputPartitions(BatchScanExec.scala:59)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExecBase.supportsColumnar(DataSourceV2ScanExecBase.scala:179)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2ScanExecBase.supportsColumnar$(DataSourceV2ScanExecBase.scala:175)at org.apache.spark.sql.execution.datasources.v2.BatchScanExec.supportsColumnar(BatchScanExec.scala:36)at org.apache.spark.sql.execution.datasources.v2.DataSourceV2Strategy.apply(DataSourceV2Strategy.scala:147)at org.apache.spark.sql.catalyst.planning.QueryPlanner.$anonfun$plan$1(QueryPlanner.scala:63)at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486)at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492)at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:491)

报错对应的是如下位置
在这里插入图片描述
从spark-3.5.2-bin-hadoop3\jars路径下找到了spark-sql_2.12-3.5.2.jar。
解压缩后发现并没有对应的org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind
在这里插入图片描述
根因就在这里
在这里插入图片描述
因为下载的spark编译包中spark-3.5.2-bin-hadoop3\jars都是基于scala 2.12的,
将org.mongodb.spark:mongo-spark-connector_2.13:10.3.0换成org.mongodb.spark:mongo-spark-connector_2.12:10.3.0问题解决

from pyspark.sql import SparkSessionmy_spark = SparkSession \.builder \.appName("myApp") \.config("spark.mongodb.read.connection.uri", "mongodb://localhost:27017/local.startup_log") \.config("spark.mongodb.write.connection.uri", "mongodb://localhost:27017/local.FSHeight") \.config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.13:10.3.0") \.getOrCreate()
# 从上述spark.mongodb.read.connection.uri读取数据    
df = my_spark.read.format("mongodb").load()
# 将读取的数据写入上述spark.mongodb.write.connection.uri,mode可选overwrite or append
df.write.format("mongodb").mode("overwrite").save()
# 重新从数据库读取数据,并查看
dataFrame = my_spark.read\.format("mongodb")\.option("database", "local")\.option("collection", "FSHeight")\.load()
dataFrame.printSchema()
dataFrame.count()
dataFrame.show()

有一个类似案例,也是可能跟spark版本有关系
https://blog.csdn.net/qq_38345222/article/details/88750174

参考

https://www.cnblogs.com/lcl-cn/p/18182316
https://cloud.tencent.com/developer/article/2338486

这篇关于Windows单机安装配置mongodb+hadoop+spark+pyspark用于大数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096757

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

JDK8(Java Development kit)的安装与配置全过程

《JDK8(JavaDevelopmentkit)的安装与配置全过程》文章简要介绍了Java的核心特点(如跨平台、JVM机制)及JDK/JRE的区别,重点讲解了如何通过配置环境变量(PATH和JA... 目录Java特点JDKJREJDK的下载,安装配置环境变量总结Java特点说起 Java,大家肯定都

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

linux配置podman阿里云容器镜像加速器详解

《linux配置podman阿里云容器镜像加速器详解》本文指导如何配置Podman使用阿里云容器镜像加速器:登录阿里云获取专属加速地址,修改Podman配置文件并移除https://前缀,最后拉取镜像... 目录1.下载podman2.获取阿里云个人容器镜像加速器地址3.更改podman配置文件4.使用po