神经网络算法 - 一文搞懂Embedding(嵌入)

2024-08-22 14:52

本文主要是介绍神经网络算法 - 一文搞懂Embedding(嵌入),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将从Embedding的本质、Embedding的原理、Embedding的应用三个方面,带您一文搞懂Embedding(嵌入)

**__**一、**__**_****__Embedding_的本质_****_

“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种“向量化”或“向量表示”的技术,这有助于更准确地描述其在这些领域中的应用和作用。

1. 机器学习中的Embedding

  • 原理:将离散数据映射为连续向量,捕捉潜在关系。

  • 方法:使用神经网络中的Embedding层,训练得到数据的向量表示。

  • 作用:提升模型性能,增强泛化能力,降低计算成本。

Embedding Model

在机器学习中,Embedding主要是指将离散的高维数据(如文字、图片、音频)映射到低维度的连续向量空间。这个过程会生成由实数构成的向量,用于捕捉原始数据的潜在关系和结构。

2. NLP中的Embedding

  • 原理:将文本转换为连续向量,基于分布式假设捕捉语义信息。

  • 方法:采用词嵌入技术(如Word2Vec)或复杂模型(如BERT)学习文本表示。

  • 作用:解决词汇鸿沟,支持复杂NLP任务,提供文本的语义理解。

Word2Vec

在NLP中,Embedding 技术(如Word2Vec)将单词或短语映射为向量,使得语义上相似的单词在向量空间中位置相近。这种Embedding对于自然语言处理任务(如文本分类、情感分析、机器翻译)至关重要。

_**二、_**_**_**_****_**_Embedding_**的原理_****_**_**_**_**_

Embedding向量不仅仅是对物体进行简单编号或标识,而是通过特征抽象和编码,在尽量保持物体间相似性的前提下,将物体映射到一个高维特征空间中。Embedding向量**能够捕捉到物体之间的相似性和关系,**在映射到高维特征空间后,相似的物体在空间中会聚集在一起,而不同的物体会被分隔开。

3. Image Embedding(图像嵌入)

  • 定义与目的:图像嵌入是将图像转换为低维向量,以简化处理并保留关键信息供机器学习使用。

  • 方法与技术:利用深度学习模型(如CNN)抽取图像特征,通过降维技术映射到低维空间,训练优化嵌入向量。

  • 应用与优势:图像嵌入广泛应用于图像分类、检索等任务,提升模型性能,降低计算需求,增强泛化能力。

图像嵌入

图像嵌入是利用深度学习将图像数据转化为低维向量的技术,广泛应用于图像处理任务中,有效提升了模型的性能和效率。

4. Word Embedding(词嵌入)

  • 定义与目的:词嵌入是将单词映射为数值向量,以捕捉单词间的语义和句法关系,为自然语言处理任务提供有效的特征表示。

  • 方法与技术:词嵌入通过预测单词上下文(如Word2Vec)或全局词频统计(如GloVe)来学习,也可使用深度神经网络捕获更复杂的语言特征。

  • 应用与优势:词嵌入广泛应用于文本分类、机器翻译等自然语言处理任务,有效提升模型性能,因其能捕捉语义信息和缓解词汇鸿沟问题。

词嵌入

词嵌入是一种将单词转换为数值向量的技术,通过捕捉单词间的语义和句法关系,为自然语言处理任务提供有效特征表示,广泛应用于文本分类、机器翻译等领域,有效提升了模型的性能。

_**三、****___**_******___**_****_Embedding_**的应用**_**___******_**___******_

5. Embedding + 推荐系统

Embedding技术为推荐系统提供了有效的用户和物品向量表示,通过捕捉潜在关系提升推荐准确性,同时具备良好的扩展性,是推荐系统的关键组成部分。

推荐系统

6. Embedding + 大模型

Embedding在大模型中发挥着突破输入限制、保持上下文连贯性、提高效率和准确性等重要作用。

  • 突破输入限制:Embedding通过将长文本编码为紧凑的高维向量,使大模型能够处理超出其原始输入限制的文本。

  • 保持上下文连贯性:Embedding在编码过程中保留文本的上下文信息,确保大模型在处理分割后的文本时仍能生成连贯的输出。

  • 提高效率和准确性:预训练的Embedding加速模型训练,提升各种自然语言处理任务的准确性,实现跨任务知识迁移。

  • 应用案例:Embedding解决大模型处理长文本时的输入和连贯性问题,通过向量检索和提示工程优化回答质量。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

这篇关于神经网络算法 - 一文搞懂Embedding(嵌入)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096590

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

一文彻底搞懂Java 中的 SPI 是什么

《一文彻底搞懂Java中的SPI是什么》:本文主要介绍Java中的SPI是什么,本篇文章将通过经典题目、实战解析和面试官视角,帮助你从容应对“SPI”相关问题,赢得技术面试的加分项,需要的朋... 目录一、面试主题概述二、高频面试题汇总三、重点题目详解✅ 面试题1:Java 的 SPI 是什么?如何实现一个

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL