GATK Mutect2类介绍

2024-08-22 10:52
文章标签 介绍 gatk mutect2

本文主要是介绍GATK Mutect2类介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GATK 的 Mutect2 是一个用于检测体细胞变异(somatic mutations)的工具,主要用于癌症研究。体细胞变异是指在个体发育过程中体细胞中发生的 DNA 变化,这些变异不遗传给下一代,但在癌症发展过程中起到重要作用。Mutect2 是 GATK 工具集的一部分,专门设计用于识别这些变异。

Mutect2功能与用途

主要功能包括:

  1. 体细胞突变检测:Mutect2 可以检测癌症样本(如肿瘤样本)中的体细胞突变,并可以处理纯度不高的样本,甚至是低频突变。

  2. 支持多种数据类型:支持不同的测序数据类型,包括全外显子组测序(WES)、全基因组测序(WGS)、以及其他靶向测序数据。

  3. 支持单样本和多样本:Mutect2 可以对单一肿瘤样本或成对的肿瘤-正常样本进行分析。

  4. 肿瘤正常配对分析:当提供了匹配的正常样本时,Mutect2 可以更准确地过滤掉常见的胚系变异,减少假阳性率。

  5. 低频变异检测:即使在杂合率较低或样本纯度较差的情况下,Mutect2 仍然可以检测出罕见的突变。

Mutect2类继承关系

Mutect2 (实现apply虚方法:调用Mutect2Engine的callRegion方法)<- AssemblyRegionWalker(实现 traverse(),其中processReadShard方法调用apply虚方法) <- WalkerBase <- GATKTool(实现doWork()含traverse虚方法) <- CommandLineProgram

GATK命令行程序的执行逻辑

每个最终的类如 Mutect2、HaplotypeCaller 会重写 onTraversalStart方法,onTraversalStart执行方法初始化engine等操作,包含各自的engine,通过apply方法 调用engine的callRegion方法
如 Mutect2 apply方法 <-  Mutect2Engine callRegion 方法

Mutect2源码

package org.broadinstitute.hellbender.tools.walkers.mutect;import htsjdk.variant.variantcontext.writer.VariantContextWriter;
import org.broadinstitute.barclay.argparser.Argument;
import org.broadinstitute.barclay.argparser.ArgumentCollection;
import org.broadinstitute.barclay.argparser.CommandLineException;
import org.broadinstitute.barclay.argparser.CommandLineProgramProperties;
import org.broadinstitute.barclay.help.DocumentedFeature;
import org.broadinstitute.hellbender.cmdline.StandardArgumentDefinitions;
import org.broadinstitute.hellbender.cmdline.programgroups.ShortVariantDiscoveryProgramGroup;
import org.broadinstitute.hellbender.engine.*;
import org.broadinstitute.hellbender.engine.filters.ReadFilter;
import org.broadinstitute.hellbender.exceptions.UserException;
import org.broadinstitute.hellbender.tools.walkers.annotator.*;
import org.broadinstitute.hellbender.tools.walkers.haplotypecaller.HaplotypeCallerArgumentCollection;
import org.broadinstitute.hellbender.tools.walkers.haplotypecaller.ReferenceConfidenceMode;
import org.broadinstitute.hellbender.transformers.ReadTransformer;
import org.broadinstitute.hellbender.utils.downsampling.MutectDownsampler;
import org.broadinstitute.hellbender.utils.downsampling.ReadsDownsampler;
import org.broadinstitute.hellbender.cmdline.ModeArgumentUtils;
import org.broadinstitute.hellbender.utils.variant.writers.SomaticGVCFWriter;import java.io.File;
import java.util.*;/*** <p>Call somatic short mutations via local assembly of haplotypes.* Short mutations include single nucleotide (SNA) and insertion and deletion (indel) alterations.* The caller uses a Bayesian somatic genotyping model that differs from the original MuTect by* <a href='http://www.nature.com/nbt/journal/v31/n3/full/nbt.2514.html'>Cibulskis et al., 2013</a>* and uses the assembly-based machinery of* <a href="https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_haplotypecaller_HaplotypeCaller.php">HaplotypeCaller</a>.* Of note, Mutect2 v4.1.0.0 onwards enables joint analysis of multiple samples.</p>** <p>This tool is featured in the <i>Somatic Short Mutation calling Best Practice Workflow</i>.* See <a href="https://software.broadinstitute.org/gatk/documentation/article?id=11136">Tutorial#11136</a> for a* step-by-step description of the workflow and <a href="https://software.broadinstitute.org/gatk/documentation/article?id=11127">Article#11127</a>* for an overview of what traditional somatic calling entails. For the latest pipeline scripts, see the* <a href="https://github.com/broadinstitute/gatk/tree/master/scripts/mutect2_wdl">Mutect2 WDL scripts directory</a>.* For pipelines with example data, see the <a href="https://github.com/gatk-workflows/gatk4-somatic-snvs-indels">gatk-workflows repository</a>.* Although we present the tool for somatic calling, it may apply to other contexts, such as mitochondrial variant calling and detection of somatic mosaicism.</p>** <p>Starting with v4.1.0.0 Mutect2 accomodates extreme high depths, e.g. 20,000X. See the following articles for details on this and additional applications.* <ul>*   <li><a href="https://software.broadinstitute.org/gatk/blog?id=23400">Blog#23400</a> details general improvements to*   Mutect2 v4.1.0.0.</li>*   <li><a href="https://software.broadinstitute.org/gatk/blog?id=23598">Blog#23598</a> details Mutect2 mitochondrial*   mode.</li>*   <li><a href="https://software.broadinstitute.org/gatk/blog?id=XXX">Blog#XXX</a> (link to come) details use of Mutect2 in extremely*   low allele fraction variant detection.</li>* </ul></p>** <h3>Usage examples</h3>* <p>Example commands show how to run Mutect2 for typical scenarios. The three modes are (i) tumor-normal mode where a* tumor sample is matched with a normal sample in analysis, (ii) tumor-only mode where a single sample's alignment* data undergoes analysis, and (iii) mitochondrial mode where sensitive calling at high depths is desirable.* <ul>*     <li>As of v4.1, there is no longer a need to specify the tumor sample name with -tumor. You need only specify*     the normal sample name with <nobr>-normal,</nobr> if you include a normal.</li>*     <li>Starting with v4.0.4.0, GATK recommends the default setting of --af-of-alleles-not-in-resource, which the*     tool dynamically adjusts for different modes. tumor-only calling sets the default to 5e-8, tumor-normal calling*     sets it to 1e-6 and mitochondrial mode sets it to 4e-3. For previous versions, the default was 0.001, the*     average heterozygosity of humans. For other organisms, change --af-of-alleles-not-in-resource to*     1/(ploidy*samples in resource).</li>* </ul></p>** <h4>(i) Tumor with matched normal</h4>* <p>Given a matched normal, Mutect2 is designed to call somatic variants only. The tool includes logic to skip* emitting variants that are clearly present in the germline based on provided evidence, e.g. in the matched normal.* This is done at an early stage to avoid spending computational resources on germline events. If the variant's* germline status is borderline, then Mutect2 will emit the variant to the callset for subsequent filtering by* <a href="https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_mutect_FilterMutectCalls.php">FilterMutectCalls</a>* and review.</p>** <pre>*     gatk Mutect2 \*     -R reference.fa \*     -I tumor.bam \*     -I normal.bam \*     -normal normal_sample_name \*     --germline-resource af-only-gnomad.vcf.gz \*     --panel-of-normals pon.vcf.gz \*     -O somatic.vcf.gz* </pre>** <p>*     Mutect2 also generates a stats file names [output vcf].stats.  That is, in the above example the stats file would be named somatic.vcf.gz.stats*     and would be in the same folder as somatic.vcf.gz.  As of GATK 4.1.1 this file is a required input to FilterMutectCalls.* </p>** <p> As of v4.1 Mutect2 supports joint calling of multiple tumor and normal samples from the same individual. The* only difference is that -I and <nobr>-normal</nobr> must be specified for the extra samples.</p>** <pre>*     gatk Mutect2 \*     -R reference.fa \*     -I tumor1.bam \*     -I tumor2.bam \*     -I normal1.bam \*     -I normal2.bam \*     -normal normal1_sample_name \*     -normal normal2_sample_name \*     --germline-resource af-only-gnomad.vcf.gz \*     --panel-of-normals pon.vcf.gz \*     -O somatic.vcf.gz* </pre>** <h4>(ii) Tumor-only mode</h4>* <p>This mode runs on a single type of sample, e.g. the tumor or the normal.* To create a PoN, call on each normal sample in this mode, then use* <a href="https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_mutect_CreateSomaticPanelOfNormals.php">CreateSomaticPanelOfNormals</a>* to generate the PoN.</p>** <pre>*  gatk Mutect2 \*   -R reference.fa \*   -I sample.bam \*   -O single_sample.vcf.gz* </pre>** <p>To call mutations on a tumor sample, call in this mode using a PoN and germline resource. After FilterMutectCalls* filtering, consider additional filtering by functional significance with* <a href="https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_funcotator_Funcotator.php">Funcotator</a>.</p>** <pre>*  gatk Mutect2 \*  -R reference.fa \*  -I sample.bam \*  --germline-resource af-only-gnomad.vcf.gz \*  --panel-of-normals pon.vcf.gz \*  -O single_sample.vcf.gz* </pre>** <h4>(iii) Mitochondrial mode</h4>* <p>Mutect2 automatically sets parameters appropriately for calling on mitochondria with the <nobr>--mitochondria</nobr> flag.* Specifically, the mode sets <nobr>--initial-tumor-lod</nobr> to 0, <nobr>--tumor-lod-to-emit</nobr> to 0, <nobr>--af-of-alleles-not-in-resource</nobr> to* 4e-3, and the advanced parameter <nobr>--pruning-lod-threshold</nobr> to -4.</p>** <pre>*  gatk Mutect2 \*  -R reference.fa \*  -L chrM \*  --mitochondria-mode \*  -I mitochondria.bam \*  -O mitochondria.vcf.gz* </pre>** <p>The mode accepts only a single sample, which can be provided in multiple files.</p>** <h4>(iv) Force-calling mode</h4>* <p>This mode force-calls all alleles in force-call-alleles.vcf in addition to any other variants Mutect2 discovers.** <pre>*  gatk Mutect2 \*   -R reference.fa \*   -I sample.bam \*   -alleles force-call-alleles.vcf*   -O single_sample.vcf.gz* </pre>** <p>*     If the sample is suspected to exhibit orientation bias artifacts (such as in the case of FFPE tumor samples) one should also*     collect F1R2 metrics by adding an --f1r2-tar-gz argument as shown below.  This file contains information that can then be passed*     to LearnReadOrientationModel, which generate an artifact prior table for each tumor sample for FilterMutectCalls to use.** </p>** <pre>* gatk Mutect2 \*  -R reference.fa \*  -I sample.bam \*  --f1r2-tar-gz f1r2.tar.gz \*  -O single_sample.vcf.gz*  </pre>** <h3>Notes</h3>* <ol>*     <li>Mutect2 does not require a germline resource nor a panel of normals (PoN) to run, although both are recommended. The tool prefilters sites*     for the matched normal and the PoN.*     <li>If a variant is absent from a given germline*     resource, then the value for --af-of-alleles-not-in-resource is used as an imputed allele frequency. Below is an excerpt of a known variants*     resource with population allele frequencies.**     <pre>*     #CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO*      1       10067   .       T       TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC      30.35   PASS    AC=3;AF=7.384E-5*      1       10108   .       CAACCCT C       46514.32        PASS    AC=6;AF=1.525E-4*      1       10109   .       AACCCTAACCCT    AAACCCT,*       89837.27        PASS    AC=48,5;AF=0.001223,1.273E-4*      1       10114   .       TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA  *,CAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA,T      36728.97        PASS    AC=55,9,1;AF=0.001373,2.246E-4,2.496E-5*      1       10119   .       CT      C,*     251.23  PASS    AC=5,1;AF=1.249E-4,2.498E-5*      1       10120   .       TA      CA,*    14928.74        PASS    AC=10,6;AF=2.5E-4,1.5E-4*      1       10128   .       ACCCTAACCCTAACCCTAAC    A,*     285.71  PASS    AC=3,1;AF=7.58E-5,2.527E-5*      1       10131   .       CT      C,*     378.93  PASS    AC=7,5;AF=1.765E-4,1.261E-4*      1       10132   .       TAACCC  *,T     18025.11        PASS    AC=12,2;AF=3.03E-4,5.049E-5*     </pre>*     </li>** <li>Additional parameters that factor towards filtering are available in* <a href="https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_hellbender_tools_walkers_mutect_FilterMutectCalls.php">FilterMutectCalls</a>.* While the tool calculates normal-lod assuming a diploid genotype, it calculates* normal-artifact-lod with the same approach it uses for tumor-lod, i.e. with a variable ploidy assumption.** <ul>*     <li>If the normal artifact log odds becomes large, then FilterMutectCalls applies the artifact-in-normal filter..</li>*     <li>The tumor log odds, which is calculated independently of any matched normal, determines whether to filter a tumor*     variant. Variants with tumor LODs exceeding the threshold pass filtering.</li>* </ul></p>*</li>* </ol>*/@CommandLineProgramProperties(summary = "Call somatic SNVs and indels via local assembly of haplotypes",oneLineSummary = "Call somatic SNVs and indels via local assembly of haplotypes",programGroup = ShortVariantDiscoveryProgramGroup.class)
@DocumentedFeature
public final class Mutect2 extends AssemblyRegionWalker {public static final String MUTECT_STATS_SHORT_NAME = "stats";public static final String DEFAULT_STATS_EXTENSION = ".stats";@ArgumentCollectionprotected M2ArgumentCollection MTAC = new M2ArgumentCollection();@Argument(fullName = StandardArgumentDefinitions.OUTPUT_LONG_NAME, shortName = StandardArgumentDefinitions.OUTPUT_SHORT_NAME, doc = "File to which variants should be written")public GATKPath outputVCF;private VariantContextWriter vcfWriter;private Mutect2Engine m2Engine;@Overridepublic boolean useVariantAnnotations() { return true;}@Overridepublic List<ReadFilter> getDefaultReadFilters() {return Mutect2Engine.makeStandardMutect2ReadFilters();}@Overridepublic ReadTransformer makePostReadFilterTransformer() {return super.makePostReadFilterTransformer().andThen(Mutect2Engine.makeStandardMutect2PostFilterReadTransformer(referenceArguments.getReferencePath(), !MTAC.dontClipITRArtifacts));}@Overridepublic List<Class<? extends Annotation>> getDefaultVariantAnnotationGroups() {return Mutect2Engine.getStandardMutect2AnnotationGroups();}@Overrideprotected ReadsDownsampler createDownsampler() {return new MutectDownsampler(assemblyRegionArgs.maxReadsPerAlignmentStart, MTAC.maxSuspiciousReadsPerAlignmentStart, MTAC.downsamplingStride);}@Overridepublic AssemblyRegionEvaluator assemblyRegionEvaluator() { return m2Engine; }@Overridepublic boolean shouldTrackPileupsForAssemblyRegions() {return MTAC.pileupDetectionArgs.usePileupDetection;}@Overridepublic void onTraversalStart() {VariantAnnotatorEngine annotatorEngine = new VariantAnnotatorEngine(makeVariantAnnotations(), null, Collections.emptyList(), false, false);m2Engine = new Mutect2Engine(MTAC, assemblyRegionArgs, createOutputBamIndex, createOutputBamMD5, getHeaderForReads(), referenceArguments.getReferenceSpecifier(), annotatorEngine);vcfWriter = createVCFWriter(outputVCF);if (m2Engine.emitReferenceConfidence()) {logger.warn("Note that the Mutect2 reference confidence mode is in BETA -- the likelihoods model and output format are subject to change in subsequent versions.");if ( MTAC.emitReferenceConfidence == ReferenceConfidenceMode.GVCF ) {try {vcfWriter = new SomaticGVCFWriter(vcfWriter, new ArrayList<Number>(MTAC.GVCFGQBands));} catch ( IllegalArgumentException e ) {throw new CommandLineException.BadArgumentValue("GQBands", "are malformed: " + e.getMessage());}}}if (MTAC.f1r2TarGz != null && !MTAC.f1r2TarGz.getAbsolutePath().endsWith(".tar.gz")) {throw new UserException.CouldNotCreateOutputFile(MTAC.f1r2TarGz, M2ArgumentCollection.F1R2_TAR_GZ_NAME + " file must end in .tar.gz");}m2Engine.writeHeader(vcfWriter, getDefaultToolVCFHeaderLines());}@Overridepublic Collection<Annotation> makeVariantAnnotations(){final Collection<Annotation> annotations = super.makeVariantAnnotations();if (MTAC.mitochondria) {annotations.add(new OriginalAlignment());}return annotations;}@Overridepublic Object onTraversalSuccess() {m2Engine.writeExtraOutputs(new File(outputVCF + DEFAULT_STATS_EXTENSION));return "SUCCESS";}@Overridepublic void apply(final AssemblyRegion region, final ReferenceContext referenceContext, final FeatureContext featureContext ) {m2Engine.callRegion(region, referenceContext, featureContext).forEach(vcfWriter::add);}@Overridepublic void closeTool() {if (vcfWriter != null) {vcfWriter.close();}if (m2Engine != null) {m2Engine.close();}}/*** mode adjustments* @return*/@Overrideprotected String[] customCommandLineValidation() {if (MTAC.flowMode != M2ArgumentCollection.FlowMode.NONE) {ModeArgumentUtils.setArgValues(getCommandLineParser(),MTAC.flowMode.getNameValuePairs(),M2ArgumentCollection.FLOW_M2_MODE_LONG_NAME);}return null;}
}

AssemblyRegionWalker源码

package org.broadinstitute.hellbender.engine;import org.broadinstitute.barclay.argparser.Argument;
import org.broadinstitute.barclay.argparser.ArgumentCollection;
import org.broadinstitute.hellbender.engine.filters.CountingReadFilter;
import org.broadinstitute.hellbender.engine.filters.ReadFilter;
import org.broadinstitute.hellbender.engine.filters.ReadFilterLibrary;
import org.broadinstitute.hellbender.engine.filters.WellformedReadFilter;
import org.broadinstitute.hellbender.engine.spark.AssemblyRegionArgumentCollection;
import org.broadinstitute.hellbender.exceptions.UserException;
import org.broadinstitute.hellbender.utils.IGVUtils;
import org.broadinstitute.hellbender.utils.IntervalUtils;
import org.broadinstitute.hellbender.utils.SimpleInterval;
import org.broadinstitute.hellbender.utils.downsampling.PositionalDownsampler;
import org.broadinstitute.hellbender.utils.downsampling.ReadsDownsampler;import java.io.IOException;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;/*** An AssemblyRegionWalker is a tool that processes an entire region of reads at a time, each marked as either "active"* (containing possible variation) or "inactive" (not likely to contain actual variation). Tool authors must implement* {@link #assemblyRegionEvaluator} to provide a means of determining whether a site is active or not, as well as* {@link #apply} to process each region. Authors must also implement methods providing default values for the* various traversal parameters.** Each region passed to {@link #apply} will come pre-marked as either "active" or "inactive" using the results of the* configured {@link #assemblyRegionEvaluator}. The {@link #assemblyRegionEvaluator} is used to evaluate the probability* that each individual locus is active, and these probabilities are used to determine the bounds of each active and* inactive region.** {@link #apply} will be called once for each active AND inactive region, and it is up to the implementation how to* handle/process active vs. inactive regions.** Internally, the reads are loaded in chunks called read shards, which are then subdivided into active/inactive regions* for processing by the tool implementation. One read shard is created per contig.*/
public abstract class AssemblyRegionWalker extends WalkerBase {@ArgumentCollectionpublic final AssemblyRegionArgumentCollection assemblyRegionArgs = new AssemblyRegionArgumentCollection();/*** If provided, this walker will write out its assembly regions* to this file in the IGV formatted TAB-delimited output:** http://www.broadinstitute.org/software/igv/IGV** Intended to make debugging the active region calculations easier*/@Argument(fullName = AssemblyRegionArgumentCollection.ASSEMBLY_REGION_OUT_LONG_NAME, doc="Output the assembly region to this IGV formatted file", optional = true)protected String assemblyRegionOut = null;private PrintStream assemblyRegionOutStream;@Overridepublic final boolean requiresReads() { return true; }@Overridepublic final boolean requiresReference() { return true; }@Overridepublic String getProgressMeterRecordLabel() { return "regions"; }private List<MultiIntervalLocalReadShard> readShards;private boolean nonRandomDownsamplingMode = nonRandomDownsamplingMode();/*** Initialize data sources for traversal.** Marked final so that tool authors don't override it. Tool authors should override onTraversalStart() instead.*/@Overrideprotected final void onStartup() {super.onStartup();assemblyRegionArgs.validate();final

这篇关于GATK Mutect2类介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096064

相关文章

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Spring Security介绍及配置实现代码

《SpringSecurity介绍及配置实现代码》SpringSecurity是一个功能强大的Java安全框架,它提供了全面的安全认证(Authentication)和授权(Authorizatio... 目录简介Spring Security配置配置实现代码简介Spring Security是一个功能强

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一