如何实现下采样(教科书级别教你拿捏)

2024-08-22 04:12

本文主要是介绍如何实现下采样(教科书级别教你拿捏),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据处理、信号处理、图像处理以及机器学习等多个领域中,下采样(Downsampling)是一项至关重要的技术。下采样旨在减少数据集中的样本数量,同时尽量保留原始数据的关键信息,以便在降低计算成本、提高处理速度或适应特定分析需求时仍然保持数据的代表性。本文将详细介绍下采样的基本概念、应用场景以及几种常用的实现方法。

一、下采样的基本概念

下采样,也称为降采样,是通过对原始数据进行抽样或聚合操作,以较低的频率重新表示数据的过程。在图像处理中,这通常意味着减少图像的分辨率;在信号处理中,则可能意味着减少采样率。下采样的目标是减少数据量,同时尽可能保持数据的统计特性和重要特征。

二、下采样的应用场景

  1. 图像处理:在图像压缩、图像缩放、特征提取等场景中,下采样能够减少图像的像素数量,降低处理难度和存储需求。
  2. 信号处理:在音频和视频处理中,下采样可以降低信号的采样率,以适应不同的播放设备或网络传输要求。
  3. 机器学习:在训练大规模数据集时,下采样可以帮助减少计算量,加速模型训练过程,尤其是在处理不平衡数据集时,下采样可以有效平衡类别分布。

例子:

import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
import numpy as npdef cm_plot(y, yp):from sklearn.metrics import confusion_matriximport matplotlib.pyplot as pltcm = confusion_matrix(y, yp)plt.matshow(cm, cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x, y], xy=(y, x), horizontalalignment='center',verticalalignment='center')plt.ylabel('True label')plt.xlabel('Predicted label')return pltdata = pd.read_csv(r"./creditcard.csv")from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
a = data[['Amount']]
data['Amount'] = scaler.fit_transform(data[['Amount']])data = data.drop(['Time'], axis=1)positive_eg = data[data['Class'] == 0]
negative_eg = data[data['Class'] == 1]
np.random.seed(seed=4)
positive_eg = positive_eg.sample(len(negative_eg))
data_c = pd.concat([positive_eg,negative_eg])
print(data_c)mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = Falselabels_count = pd.value_counts(data['Class'])
plt.title("正负例样本数")
plt.xlabel("类别")
plt.ylabel("频数")
labels_count.plot(kind='bar')
plt.show()from sklearn.model_selection import train_test_splitx = data_c.drop('Class', axis=1)
y = data_c.Class
x_train, x_test, y_train, y_test = \train_test_split(x, y, train_size=0.3, random_state=0)from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegressionscores = []
c_param_range = [0.01, 0.1, 1, 10, 100]
for i in c_param_range:lr = LogisticRegression(C=i, penalty='l2', solver='lbfgs', max_iter=1000)score = cross_val_score(lr, x_train, y_train, cv=8, scoring='recall')score_mean = sum(score) / len(score)scores.append(score_mean)print(score_mean)best_c = c_param_range[np.argmax(scores)]lr = LogisticRegression(C=best_c, penalty='l2', max_iter=1000)
lr.fit(x_train, y_train)from sklearn import metricstrain_predicted = lr.predict(x_train)
print(metrics.classification_report(y_train, train_predicted))
cm_plot(y_train, train_predicted).show()test_predicted = lr.predict(x_test)
print(metrics.classification_report(y_test, test_predicted))
cm_plot(y_test, test_predicted).show()x1 = data.drop('Class', axis=1)
y1 = data.Class
x1_train, x1_test, y1_train, y1_test = \train_test_split(x1, y1, train_size=0.3, random_state=0)test_predicted_big = lr.predict(x1_test)
print(metrics.classification_report(y1_test, test_predicted_big))
cm_plot(y1_test, test_predicted_big).show()recalls = []
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in thresholds:y_perdict_proba = lr.predict_proba(x_test)y_perdict_proba = pd.DataFrame(y_perdict_proba)y_perdict_proba = y_perdict_proba.drop([0], axis=1)y_perdict_proba[y_perdict_proba[[1]] > i] = 1y_perdict_proba[y_perdict_proba[[1]] <= i] = 0recall = metrics.recall_score(y_test, y_perdict_proba[1])recalls.append(recall)print("{} Recall metric in the testing dataset: {:.3f}".format(i, recall))
  1. 导入库

    • pandas 用于数据处理。
    • matplotlib.pyplot 和 pylab.mpl 用于绘图。
    • numpy 用于数值计算。
    • sklearn 中的 confusion_matrix 和其他模块用于机器学习任务。
  2. 定义混淆矩阵绘制函数 cm_plot

    • 计算混淆矩阵,并用 matplotlib 绘制。
    • 在矩阵中添加每个元素的值,便于观察。
  3. 数据加载和预处理

    • 读取数据集 creditcard.csv
    • 标准化 Amount 特征,确保其均值为 0,方差为 1。
    • 删除 Time 列,因为它对模型训练没有帮助。
    • 对数据进行平衡处理:通过随机抽样将正负样本数量调整一致。
    • 打印平衡后的数据集。
  4. 绘制正负例样本数的柱状图

    • 使用 pandas 计算每个类别的样本数,并用 matplotlib 绘制柱状图。
  5. 模型训练和评估

    • 划分数据集为训练集和测试集。
    • 使用逻辑回归模型,调整正则化参数 C,并通过交叉验证评估模型的召回率。
    • 选择最佳的 C 参数,并用其训练最终模型。
    • 输出训练集和测试集上的分类报告,并绘制混淆矩阵。
  6. 对整个数据集的最终模型评估

    • 重新划分数据集为训练集和测试集,并评估模型的性能。
    • 打印最终的分类报告和混淆矩阵。
  7. 调整阈值进行召回率分析

    • 修改预测概率的阈值,计算不同阈值下的召回率。
    • 绘制不同阈值下的召回率,帮助理解模型在不同条件下的表现。

这篇关于如何实现下采样(教科书级别教你拿捏)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095205

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL 默认隔离级别的设置

《PostgreSQL默认隔离级别的设置》PostgreSQL的默认事务隔离级别是读已提交,这是其事务处理系统的基础行为模式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一 默认隔离级别概述1.1 默认设置1.2 各版本一致性二 读已提交的特性2.1 行为特征2.2

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取