如何实现下采样(教科书级别教你拿捏)

2024-08-22 04:12

本文主要是介绍如何实现下采样(教科书级别教你拿捏),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据处理、信号处理、图像处理以及机器学习等多个领域中,下采样(Downsampling)是一项至关重要的技术。下采样旨在减少数据集中的样本数量,同时尽量保留原始数据的关键信息,以便在降低计算成本、提高处理速度或适应特定分析需求时仍然保持数据的代表性。本文将详细介绍下采样的基本概念、应用场景以及几种常用的实现方法。

一、下采样的基本概念

下采样,也称为降采样,是通过对原始数据进行抽样或聚合操作,以较低的频率重新表示数据的过程。在图像处理中,这通常意味着减少图像的分辨率;在信号处理中,则可能意味着减少采样率。下采样的目标是减少数据量,同时尽可能保持数据的统计特性和重要特征。

二、下采样的应用场景

  1. 图像处理:在图像压缩、图像缩放、特征提取等场景中,下采样能够减少图像的像素数量,降低处理难度和存储需求。
  2. 信号处理:在音频和视频处理中,下采样可以降低信号的采样率,以适应不同的播放设备或网络传输要求。
  3. 机器学习:在训练大规模数据集时,下采样可以帮助减少计算量,加速模型训练过程,尤其是在处理不平衡数据集时,下采样可以有效平衡类别分布。

例子:

import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
import numpy as npdef cm_plot(y, yp):from sklearn.metrics import confusion_matriximport matplotlib.pyplot as pltcm = confusion_matrix(y, yp)plt.matshow(cm, cmap=plt.cm.Blues)plt.colorbar()for x in range(len(cm)):for y in range(len(cm)):plt.annotate(cm[x, y], xy=(y, x), horizontalalignment='center',verticalalignment='center')plt.ylabel('True label')plt.xlabel('Predicted label')return pltdata = pd.read_csv(r"./creditcard.csv")from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
a = data[['Amount']]
data['Amount'] = scaler.fit_transform(data[['Amount']])data = data.drop(['Time'], axis=1)positive_eg = data[data['Class'] == 0]
negative_eg = data[data['Class'] == 1]
np.random.seed(seed=4)
positive_eg = positive_eg.sample(len(negative_eg))
data_c = pd.concat([positive_eg,negative_eg])
print(data_c)mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = Falselabels_count = pd.value_counts(data['Class'])
plt.title("正负例样本数")
plt.xlabel("类别")
plt.ylabel("频数")
labels_count.plot(kind='bar')
plt.show()from sklearn.model_selection import train_test_splitx = data_c.drop('Class', axis=1)
y = data_c.Class
x_train, x_test, y_train, y_test = \train_test_split(x, y, train_size=0.3, random_state=0)from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegressionscores = []
c_param_range = [0.01, 0.1, 1, 10, 100]
for i in c_param_range:lr = LogisticRegression(C=i, penalty='l2', solver='lbfgs', max_iter=1000)score = cross_val_score(lr, x_train, y_train, cv=8, scoring='recall')score_mean = sum(score) / len(score)scores.append(score_mean)print(score_mean)best_c = c_param_range[np.argmax(scores)]lr = LogisticRegression(C=best_c, penalty='l2', max_iter=1000)
lr.fit(x_train, y_train)from sklearn import metricstrain_predicted = lr.predict(x_train)
print(metrics.classification_report(y_train, train_predicted))
cm_plot(y_train, train_predicted).show()test_predicted = lr.predict(x_test)
print(metrics.classification_report(y_test, test_predicted))
cm_plot(y_test, test_predicted).show()x1 = data.drop('Class', axis=1)
y1 = data.Class
x1_train, x1_test, y1_train, y1_test = \train_test_split(x1, y1, train_size=0.3, random_state=0)test_predicted_big = lr.predict(x1_test)
print(metrics.classification_report(y1_test, test_predicted_big))
cm_plot(y1_test, test_predicted_big).show()recalls = []
thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in thresholds:y_perdict_proba = lr.predict_proba(x_test)y_perdict_proba = pd.DataFrame(y_perdict_proba)y_perdict_proba = y_perdict_proba.drop([0], axis=1)y_perdict_proba[y_perdict_proba[[1]] > i] = 1y_perdict_proba[y_perdict_proba[[1]] <= i] = 0recall = metrics.recall_score(y_test, y_perdict_proba[1])recalls.append(recall)print("{} Recall metric in the testing dataset: {:.3f}".format(i, recall))
  1. 导入库

    • pandas 用于数据处理。
    • matplotlib.pyplot 和 pylab.mpl 用于绘图。
    • numpy 用于数值计算。
    • sklearn 中的 confusion_matrix 和其他模块用于机器学习任务。
  2. 定义混淆矩阵绘制函数 cm_plot

    • 计算混淆矩阵,并用 matplotlib 绘制。
    • 在矩阵中添加每个元素的值,便于观察。
  3. 数据加载和预处理

    • 读取数据集 creditcard.csv
    • 标准化 Amount 特征,确保其均值为 0,方差为 1。
    • 删除 Time 列,因为它对模型训练没有帮助。
    • 对数据进行平衡处理:通过随机抽样将正负样本数量调整一致。
    • 打印平衡后的数据集。
  4. 绘制正负例样本数的柱状图

    • 使用 pandas 计算每个类别的样本数,并用 matplotlib 绘制柱状图。
  5. 模型训练和评估

    • 划分数据集为训练集和测试集。
    • 使用逻辑回归模型,调整正则化参数 C,并通过交叉验证评估模型的召回率。
    • 选择最佳的 C 参数,并用其训练最终模型。
    • 输出训练集和测试集上的分类报告,并绘制混淆矩阵。
  6. 对整个数据集的最终模型评估

    • 重新划分数据集为训练集和测试集,并评估模型的性能。
    • 打印最终的分类报告和混淆矩阵。
  7. 调整阈值进行召回率分析

    • 修改预测概率的阈值,计算不同阈值下的召回率。
    • 绘制不同阈值下的召回率,帮助理解模型在不同条件下的表现。

这篇关于如何实现下采样(教科书级别教你拿捏)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095205

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S