阿里资深架构师推荐:银行业数据治理之数据资产管理心得

本文主要是介绍阿里资深架构师推荐:银行业数据治理之数据资产管理心得,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

摘要

本文是阿里云数据中台资深专家结合自己十几年工作经验,从数据资产管理的角度做了一些总结和思考。

 

前言

随着2018年银保监发文《银行业金融机构数据治理指引》,各银监局,机关各部门,各政策性银行、大型银行、股份制银行,邮储银行,外资银行,金融资产管理公司,以及其他会管金融机构纷纷开始了新一轮的数据治理的相关工作。然而在金融机构进行数据治理的过程中,涉及的领域和相关的工作非常多。

本文是作者结合自己十几年在机构做数据相关的工作经验,从数据资产管理的角度做了一些总结和思考。

 

银行业为什么要进行数据资产管理

近年来,银行业金融机构在业务快速发展过程中,积累了客户数据、交易数据、外部数据等海量数据。数据已经成为银行的重要资产和核心竞争力,充分发挥数据价值,用数据驱动银行发展,提高银行经营质效,具有重要意义。

当前,银行业金融机构数据质量存在较多问题,主要表现为数据准确性和完整性欠缺,时效性和适应性不足。数据质量问题已经阻碍了银行业金融机构向高质量方向发展,对数据资产的管理、治理亟待加强。

银行业数据资产管理三个方面

当我们提到数据资产管理,要从三个方面来看。即数据资产的盘点与分析、对数据资产的治理、以及资产的应用。接下来我们就一个个展开。

首先银行要用好数据,把数据变成资产创造价值,就要搞清楚手里到底有哪些数据资产。而银行有太多的数据,因此数据资产盘点要落地也并不简单。数据资产的盘点和评估要考虑融通性,保证数据盘点的精准。在数据内容的理解方面,要建立全行的数据资产目录,并且对数据进行画像,对数据的来源、业务含义等进行描述。同时要有确信机制和工具来支撑,通过各部门的协同实现数据资产探查。这里不只是数据团队,包括科技和业务部门都要参与进来,有明确的接口人来配合数据资产的盘点工作。这里值得一提的是数据中台的理念其实和数据资产管理不谋而合,在数据中台的建设中,非常重要的工作就是数据公共层的建设,通过数据公共层建设可以清晰的梳理出我们的数据资产分布及使用情况,结合资产的访问路径分析,最终形成全行的数据资产全景分析。资产盘点与分析这里的细节工作本文不再一一展开。

在银行对自己的数据资产有了比较清晰了解的基础上,便可以展开数据资产的治理工作了。银行机构应当把数据质量风险和安全合规风险都纳入数据资产治理的范畴,并且形成一个资产治理的闭环。根据数据资产使用的现状出发,发现当前的问题并提出治理优化的策略,然后通过对治理效果的反馈来迭代现状分析,形成一个治理能力的闭环。在数据质量的保障方面,应当围绕数据的完整性、准确性、一致性以及及时性,对数据处理链条上的流程规范,在事前事中事后的关键环节进行卡点校验。同时对数据任务、数据监控划分不同级别不同保障力度,实现精准保障。在业务高峰期,很多银行机构都会出现数据报表加工延时的情况,针对这种非常影响业务体验的情况,银行可以根据业务或数据产品产出的上下游所有节点组合成任务组,对任务组进行分级,保障产出的优先级、监控产出的及时性。在安全合规的分享治理方面,银行要形成一套以数据为中心,以数据的流转为主线,贯穿数据全生命周期的安全管理机制。主要涉及的工作有: 防窃取(泄漏)、防误用、防滥用 。数据的全生命周期包括生产、存储、使用、传输、传播到销货。对客户数据、业务数据、公司财务运营管理进行分级。一般我们会分成公开数据、内部数据、保障数据和机密数据四个等级。

银行的数据资产管理对银行的业务数据化运营和数据业务化转型都非常重要,这其中包括大量的管理规范制定和组织间协同工作,当然还要有相关的工具平台来帮助数据资产管理的落地,为用户提供多维度数据资产分析,智能化数据资产治理,全链路数据资产监管与价值追踪,全方位数据资产运营的数据资 产管理一站式服务平台 。

这篇关于阿里资深架构师推荐:银行业数据治理之数据资产管理心得的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094746

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口