阿里资深架构师推荐:银行业数据治理之数据资产管理心得

本文主要是介绍阿里资深架构师推荐:银行业数据治理之数据资产管理心得,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

摘要

本文是阿里云数据中台资深专家结合自己十几年工作经验,从数据资产管理的角度做了一些总结和思考。

 

前言

随着2018年银保监发文《银行业金融机构数据治理指引》,各银监局,机关各部门,各政策性银行、大型银行、股份制银行,邮储银行,外资银行,金融资产管理公司,以及其他会管金融机构纷纷开始了新一轮的数据治理的相关工作。然而在金融机构进行数据治理的过程中,涉及的领域和相关的工作非常多。

本文是作者结合自己十几年在机构做数据相关的工作经验,从数据资产管理的角度做了一些总结和思考。

 

银行业为什么要进行数据资产管理

近年来,银行业金融机构在业务快速发展过程中,积累了客户数据、交易数据、外部数据等海量数据。数据已经成为银行的重要资产和核心竞争力,充分发挥数据价值,用数据驱动银行发展,提高银行经营质效,具有重要意义。

当前,银行业金融机构数据质量存在较多问题,主要表现为数据准确性和完整性欠缺,时效性和适应性不足。数据质量问题已经阻碍了银行业金融机构向高质量方向发展,对数据资产的管理、治理亟待加强。

银行业数据资产管理三个方面

当我们提到数据资产管理,要从三个方面来看。即数据资产的盘点与分析、对数据资产的治理、以及资产的应用。接下来我们就一个个展开。

首先银行要用好数据,把数据变成资产创造价值,就要搞清楚手里到底有哪些数据资产。而银行有太多的数据,因此数据资产盘点要落地也并不简单。数据资产的盘点和评估要考虑融通性,保证数据盘点的精准。在数据内容的理解方面,要建立全行的数据资产目录,并且对数据进行画像,对数据的来源、业务含义等进行描述。同时要有确信机制和工具来支撑,通过各部门的协同实现数据资产探查。这里不只是数据团队,包括科技和业务部门都要参与进来,有明确的接口人来配合数据资产的盘点工作。这里值得一提的是数据中台的理念其实和数据资产管理不谋而合,在数据中台的建设中,非常重要的工作就是数据公共层的建设,通过数据公共层建设可以清晰的梳理出我们的数据资产分布及使用情况,结合资产的访问路径分析,最终形成全行的数据资产全景分析。资产盘点与分析这里的细节工作本文不再一一展开。

在银行对自己的数据资产有了比较清晰了解的基础上,便可以展开数据资产的治理工作了。银行机构应当把数据质量风险和安全合规风险都纳入数据资产治理的范畴,并且形成一个资产治理的闭环。根据数据资产使用的现状出发,发现当前的问题并提出治理优化的策略,然后通过对治理效果的反馈来迭代现状分析,形成一个治理能力的闭环。在数据质量的保障方面,应当围绕数据的完整性、准确性、一致性以及及时性,对数据处理链条上的流程规范,在事前事中事后的关键环节进行卡点校验。同时对数据任务、数据监控划分不同级别不同保障力度,实现精准保障。在业务高峰期,很多银行机构都会出现数据报表加工延时的情况,针对这种非常影响业务体验的情况,银行可以根据业务或数据产品产出的上下游所有节点组合成任务组,对任务组进行分级,保障产出的优先级、监控产出的及时性。在安全合规的分享治理方面,银行要形成一套以数据为中心,以数据的流转为主线,贯穿数据全生命周期的安全管理机制。主要涉及的工作有: 防窃取(泄漏)、防误用、防滥用 。数据的全生命周期包括生产、存储、使用、传输、传播到销货。对客户数据、业务数据、公司财务运营管理进行分级。一般我们会分成公开数据、内部数据、保障数据和机密数据四个等级。

银行的数据资产管理对银行的业务数据化运营和数据业务化转型都非常重要,这其中包括大量的管理规范制定和组织间协同工作,当然还要有相关的工具平台来帮助数据资产管理的落地,为用户提供多维度数据资产分析,智能化数据资产治理,全链路数据资产监管与价值追踪,全方位数据资产运营的数据资 产管理一站式服务平台 。

这篇关于阿里资深架构师推荐:银行业数据治理之数据资产管理心得的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1094746

相关文章

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java

基于Python+PyQt5打造一个跨平台Emoji表情管理神器

《基于Python+PyQt5打造一个跨平台Emoji表情管理神器》在当今数字化社交时代,Emoji已成为全球通用的视觉语言,本文主要为大家详细介绍了如何使用Python和PyQt5开发一个功能全面的... 目录概述功能特性1. 全量Emoji集合2. 智能搜索系统3. 高效交互设计4. 现代化UI展示效果

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元