【转载】python变量赋值(可变与不可变)

2024-08-21 23:08

本文主要是介绍【转载】python变量赋值(可变与不可变),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://www.cnblogs.com/evening/archive/2012/04/11/2442788.html

知识点:python中,万物皆对象。

   python中不存在所谓的传值调用,一切传递的都是对象的引用,也可以认为是传址。

python中,对象分为可变(mutable)和不可变(immutable)两种类型,元组(tuple)、数值型(number)、字符串(string)均为不可变对象,而字典型(dictionary)和列表型(list)的对象是可变对象。

不可变类型特点:

  看下面的例子(例1)

>>>a = 1 #将名字a与内存中值为1的内存绑定在一起
>>>a = 2 #将名字a与内存中值为2的内存绑定在一起,而不是修改原来a绑定的内存中的值,这时,内存中值为1的内存地址引用计数-1,当引用计数为0时,内存地址被回收
>>>b = a #变量b执行与a绑定的内存
>>>b = 3 #创建一个内存值为3的内存地址与变量名字b进行绑定。这是a还是指向值为2的内存地址。
>>>a,b
>>>(2,3)

  这种机制的好处有哪些,弊端有哪些?

  看一个例子(例2)

>>>x = 1
>>>y = 1
>>>x = 1
>>> x is y
True
>>>y is z
True

  如上所示,因为整数为不可变,x,y,z在内存中均指向一个值为1的内存地址,也就是说,x,y,z均指向的是同一个地址,值得注意的是,整形来说,目前仅支持(-1,100)。

  总结一下,不可变对象的优缺点。

    优点是,这样可以减少重复的值对内存空间的占用?。

    缺点呢,如例1所示,我要修改这个变量绑定的值,如果内存中没用存在该值的内存块,那么必须重新开辟一块内存,把新地址与变量名绑定。而不是修改变量原来指向的内存块的值,这回给执行效率带来一定的降低。

  下面看一个可变对象的例子(例3)

>>>a = [1]
>>>b = a #由于列别是可变对象类型,所以传递的时候,与变量名d绑定的内存地址与a绑定的内存地址是同一地址,内存里的值是[1]>>>b[0] = 2
>>>a
[2]

  如上所示:变量名a和b是绑定的同一内存地址,对任一个变量对应的值得改变,都会反映到另一个变量上。

  最后再看一个例子  

def mutable(b = []): # 函数使用了缺省变量
    b.append(0)return b
>>>mutable()
[0]
>>>mutable()
[0,0]
>>>mutable()
[0,0,0]

  这里连续三次以缺省值,运行函数3此,每次的结果都不一样,按我们的想想,三次的结果,应该是一样的,都为[0],但是...

  那么原因是什么呢,前面说过,一切皆为对象,函数mutable也为一个对象,使用dir()查看函数的属性:

  dir(mutable)

  ['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribute__', '__globals__', '__gt__', '__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', '__module__', '__name__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']

  mutable.__defaults__#函数对象的默认参数

  ([0,0,0],)

     上面我们三次运行了mutable这个函数,如果用mutable.__defaults__来查看函数对象的默认参数变化的话,就会发现问题了。

>>>mutable. __defaults__
([],)
>>>mutable()
[0]
>>>mutable.__defaults__
([0],)
>>>mutable()
[0,0]
>>>mutable.__defaults__
([0,0],)

  呵呵,终于明白了,原来,每运行一次,函数作为一个对象的内在属性的值发生了变化。导致每次运行的结果不一致。

  在编程过程中,如果不注意此类问题,很容易造成不可预料的错误。

  对于类来说也是如此

class b:
    x = []def set(self):self.x.append(1)def get(self):return self.x>>>for i in range(3):
..........a = b()
..........b.__dict__
..........a.set()
..........a.get()dict_proxy({'__module__': '__main__', 'set': <function set at 0x021ED3D8>, 'get': <function get at 0x021ED420>, '__dict__': <attribute '__dict__' of 'b' objects>, 'x': [], '__weakref__': <attribute '__weakref__' of 'b' objects>, '__doc__': None})
[1]
dict_proxy({'__module__': '__main__', 'set': <function set at 0x021ED3D8>, 'get': <function get at 0x021ED420>, '__dict__': <attribute '__dict__' of 'b' objects>, 'x': [1,], '__weakref__': <attribute '__weakref__' of 'b' objects>, '__doc__': None})
[1, 1]
dict_proxy({'__module__': '__main__', 'set': <function set at 0x021ED3D8>, 'get': <function get at 0x021ED420>, '__dict__': <attribute '__dict__' of 'b' objects>, 'x': [1, 1], '__weakref__': <attribute '__weakref__' of 'b' objects>, '__doc__': None})
[1, 1, 1]

仔细观察,类对象内部属性__dict__中'x'对应的值,在每创建一个对象时都发生了变化。也就是说,在每次创建类对象时,变量x引用内存的初始值是不同的,这终要归因于列表(list)的可变性导致的。每次创建对象时,因为列表的可变性,函数对象b的__dict__属性中,x键对应的值,被改变,而不是重新创建,所以出现了上面的结果。

综上:初学者如果不充分理解python的变量和类型和参数传递方式,或者是一切解释对象的原理,会很容易产生上面的错误.

这篇关于【转载】python变量赋值(可变与不可变)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094548

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、