(分析篇章)从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系

本文主要是介绍(分析篇章)从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系(分析篇章)

流程说明:

  • 分析流程的输入同样是网站的文章ID。借助Workflow内置的HTTP调用节点和代码节点,我们能够方便地调用网站的API,从而获取到文章的元数据(涵盖标题、来源、链接、语言等信息)以及全文内容。
  • 为了确保不遗漏文章中的任何关键信息,分析流程首先会判断文章的长度。如果文章长度超过6000个字符,我们会进行分段处理;否则,将直接对全文进行分析。
  • 分析的内容输出主要包括一句话总结、文章摘要、关键词、主要观点和精彩语句等,这些元素能够帮助读者快速了解文章的核心内容。
  • 在分析流程中,我们充分利用了Workflow中的分支、迭代、变量聚合等节点,这使得我们能够对流程进行灵活的控制。对于不同的分支处理结果,我们可以使用变量聚合将全文分析的内容整合在一起,便于后续节点的处理。
  • 接下来是领域划分和标签生成节点。我们通过大语言模型对文章内容进行分类,生成文章所属的领域和标签列表。这些标签涵盖了主题、技术、应用领域、产品、公司、平台、名人、趋势等多个方面,有助于后续文章的组织,并增强搜索和推荐功能的效果。
  • 在文章评分节点中,我们利用大语言模型对文章内容进行多维度的评估,包括内容深度、写作质量、实用性、相关性等。这将生成文章的评分,帮助读者快速筛选出优质文章。
  • 随后的检查反思节点要求大语言模型扮演技术文章评审专家的角色。它会对前述的输出进行全面性、准确性、一致性

这篇关于(分析篇章)从海量信息中脱颖而出:Workflow智能分析解决方案,大语言模型为AI科技文章打造精准摘要评分体系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093938

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Rust 智能指针的使用详解

《Rust智能指针的使用详解》Rust智能指针是内存管理核心工具,本文就来详细的介绍一下Rust智能指针(Box、Rc、RefCell、Arc、Mutex、RwLock、Weak)的原理与使用场景,... 目录一、www.chinasem.cnRust 智能指针详解1、Box<T>:堆内存分配2、Rc<T>: