第三期书生大模型实战营 第5关 XTuner 微调个人小助手认知任务

本文主要是介绍第三期书生大模型实战营 第5关 XTuner 微调个人小助手认知任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境准备

这里就不写了,前面写带太多了

安装 XTuner

mkdir -p /root/puyu/5cd /root/puyu/5git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/puyu/5/XTuner

模型准备

软件安装好后,我们就可以准备要微调的模型了


mkdir -p Shanghai_AI_Laboratoryln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b

执行上述操作后,Shanghai_AI_Laboratory/internlm2-chat-1_8b 将直接成为一个符号链接,这个链接指向 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 的位置。

这意味着,当我们访问 Shanghai_AI_Laboratory/internlm2-chat-1_8b 时,实际上就是在访问 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 目录下的内容。通过这种方式,我们无需复制任何数据,就可以直接利用现有的模型文件进行后续的微调操作,从而节省存储空间并简化文件管理。

然后,我们可以直接启动应用。

conda activate xtuner0121streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

在这里插入图片描述
在这里插入图片描述

指令跟随微调

下面我们对模型进行微调,让模型认识到自己的弟位,了解它自己是你的一个助手

准数据文件

为了让模型能够认清自己的身份弟位,在询问自己是谁的时候按照我们预期的结果进行回复,我们就需要通过在微调数据集中大量加入这样的数据。我们准备一个数据集文件datas/assistant.json,文件内容为对话数据。

cd /root/InternLM/XTuner
mkdir -p datas
touch datas/assistant.json

为了简化数据文件准备,我们也可以通过脚本生成的方式来准备数据。创建一个脚本文件 xtuner_generate_assistant.py :

cd /root/InternLM/XTuner
touch xtuner_generate_assistant.py

输入脚本内容并保存

import json# 设置用户的名字
name = '伍鲜同志'
# 设置需要重复添加的数据次数
n = 8000# 初始化数据
data = [{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])data.append(data[1])# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)

然后执行脚本

准备配置文件

在准备好了模型和数据集后,我们就要根据我们选择的微调方法结合微调方案来找到与我们最匹配的配置文件了,从而减少我们对配置文件的修改量。

配置文件其实是一种用于定义和控制模型训练和测试过程中各个方面的参数和设置的工具。
由于我们是对internlm2-chat-1_8b模型进行指令微调,所以与我们的需求最匹配的配置文件是 internlm2_chat_1_8b_qlora_alpaca_e3,这里就复制该配置文件。

xtuner copy-cfg 命令用于复制一个内置的配置文件。该命令需要两个参数:CONFIG 代表需要复制的配置文件名称,SAVE_PATH 代表复制的目标路径。在我们的输入的这个命令中,我们的 CONFIG 对应的是上面搜索到的 internlm2_chat_1_8b_qlora_alpaca_e3 ,而 SAVE_PATH 则是当前目录 .。

xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .

在这里插入图片描述

修改配置文件

在这里插入图片描述

启动微调

完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_chat_1_8b_qlora_alpaca_e3_copy.py。
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。

cd /root/InternLM/XTuner
conda activate xtuner0121xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

在这里插入图片描述

模型格式转换

# 先获取最后保存的一个pth文件
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

在这里插入图片描述

模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

基础作业完成

在这里插入图片描述
微调前的内容:
在这里插入图片描述微调后的内容:
在这里插入图片描述

这篇关于第三期书生大模型实战营 第5关 XTuner 微调个人小助手认知任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093825

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red