人工智能: 自动寻路算法实现(三、A*算法)

2024-08-21 17:18

本文主要是介绍人工智能: 自动寻路算法实现(三、A*算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本篇文章是机器人自动寻路算法实现的第三章。我们要讨论的是一个在一个M×N的格子的房间中,有若干格子里有灰尘,有若干格子里有障碍物,而我们的扫地机器人则是要在不经过障碍物格子的前提下清理掉房间内的灰尘。具体的问题情景请查看人工智能: 自动寻路算法实现(一、广度优先搜索)这篇文章,即我们这个系列的第一篇文章。在前两篇文章里,我们介绍了通过广度优先搜索算法和深度优先算法来实现扫地机器人自动寻路的功能。两种算法都有各自的优点和缺点:对于广度优先搜索算法,程序会找到最优解,但是需要遍历的节点很多。而深度优先搜索则与之相反:遍历的节点很少,但是不一定会找到最优解,而且还有一种极端的情况,就是深度优先搜索在遍历的时候,如果遍历的那个分支是无限大,并且解并不在那个分支中而是在其他的分支中,那么深度优先搜索永远都找不到解。两种算法具体的比较在人工智能: 自动寻路算法实现(二、深度优先搜索)中有详细介绍。在这篇文章中,我们要介绍一种结合了前两种算法优点的算法,A*算法。

A*算法被广泛应用于游戏中的自动寻路功能,说明它作为一个路径规划的算法,确实有着很大的优势。以游戏举例来看,比如在游戏中我们想要找到从一个位置到另一个位置的路径,我们不仅尝试着找到最短距离的路径;我们还想要顾忌到消耗的时间。在一张地图上,穿过一片池塘速度会明显减慢,所以我们想要找到一条可以绕过水路的路径。

本文项目下载地址: https://github.com/tjfy1992/Robot-Path-planning-AStar

正文

算法介绍

首先我们来回顾一下广度优先搜索和深度优先搜索算法。我们从前两篇文章中可以得知,广度优先搜索算法中使用数据结构是队列,而深度优先搜索算法中适用的数据结构是栈。对于一个队列,节点总是先进先出(FIFO),因此对于队列中的第一个节点来说,它的所有直接子节点在队列中都是紧紧跟随在该节点之后,这样程序在运行的时候,对于第一个入队列的节点,就会先遍历完他所有的直接子节点,接着才会去遍历他的每个直接子节点的直接子节点。可以看出遍历的顺序就是一个类似金字塔的形状:第一行有一个头结点,第二行是该头结点的直接子节点,而第三行是直接子节点的直接子节点…每遍历一行都会找出这一行的所有子节点,所以这种算法被称为“广度优先搜索”。


这里写图片描述
广度优先搜索的节点遍历顺序

而相对地,深度优先搜索就很好理解。对于任何一个节点,都会先去遍历它的第一个子节点的第一个子节点的第一个子节点…后进先出(LIFO)的栈则正好保证了这一点。这种“一条路走到黑”的方式,在它遍历的第一条路径就可能会找到解,但是由于不是横向遍历,路径的长度并不一定是最短,即程序不一定会给出最优解。


这里写图片描述
深度优先搜索的节点遍历顺序

这两种算法的优缺点都很明显,于是我们需要想出一种能结合两种算法优点的算法。我们可以做出如下处理:对于广度优先搜索算法的队列,如果我们可以想出一种方法,对队列进行排序,把前文中类似“穿过一片沼泽”这样的节点尽量放在最后去遍历,那么我们就可以在相对短的时间内找出一个最优解来。在A*算法中,我们对节点按以下的方式进行排序:

F = G + H

其中,F是我们计算出的权值,F值越大,代表这个节点的收益越小,也就越接近于我们上文提到的“沼泽地”。

G指的是我们从初始节点到达现在的节点的过程中付出的代价。例如我们的机器人每走一格或每清理一个灰尘会耗费1个单位时间,那么机器人做了5个动作之后,我们的G值就是5。

H值是一个相对开放的概念,它指的是从目前状态到目标状态预计要付出的代价。这个值由算法工程师来进行估算,H值被估算的越准确,算法所需要遍历的节点就越少。以我们的扫地机器人举例,假如目前房间内只剩下一个灰尘,而这个灰尘就在机器人的东侧(右侧),那么机器人通过这种算法就可以直接选择先往东走去清理这个灰尘,而不是向其他方向走,避免了“南辕北辙”这种人工智障???的情况出现。


这里写图片描述

计算出这个值之后,我们就按这个F值在队列中进行排序。本例中源码由Java编写,在Java中有一种数据结构,PriorityQueue,即优先级队列,这种数据结构正好可以用来存放要遍历的节点。

代码

首先是Point类,用于表示坐标系中的点。这个文件与前两个算法中相同。代码如下:

public class Point {private int X;private int Y;public Point(int x, int y){this.X = x;this.Y = y;}public int getX() {return X;}public void setX(int x) {X = x;}public int getY() {return Y;}public void setY(int y) {Y = y;}//判断两个点是否坐标相同public static boolean isSamePoint(Point point1, Point point2){if(point1.getX() == point2.getX() && point1.getY() == point2.getY())return true;return false;}}

接下来是State类。如果把问题的情景(房间、机器人)比作一个系统,那么State类就表示某一时刻系统的状态,也就是我们要遍历的节点。注意这个类里比之前的两个算法多了两个属性,F值和G值。G值就是机器人从其实状态到当前状态所进行的操作次数。F值是G值和H值的和。而H值,在这里并没有列出来,因为我把它视为当前状态下仍未被清理的灰尘数量,也就是灰尘列表的size,通过当前状态的dirtList取size()即可得到,便不再单独设该属性。

import java.util.ArrayList;
import java.util.List;public class State {//机器人位置private Point robotLocation;//操作,分为N(向上移动一格), S(向下移动一格), W(向左移动一格), E(向右移动一格)以及C(清理灰尘)private String operation;//当前节点的父节点, 用于达到目标后进行回溯private State previousState;//灰尘所在坐标的listprivate List<Point> dirtList;//fvalue为gvalue和hvalue的和private int fvalue;//gvalueprivate 

这篇关于人工智能: 自动寻路算法实现(三、A*算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093788

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义