Scikit中使用Grid_Search来获取模型的最佳参数

2024-08-21 11:08

本文主要是介绍Scikit中使用Grid_Search来获取模型的最佳参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. grid search是用来寻找模型的最佳参数

先导入一些依赖包

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import metrics
import numnpy as np
import pandas as pd

2. 设置要查找的参数

params={'learning_rate':np.linspace(0.05,0.25,5), 'max_depth':[x for x in range(1,8,1)], 'min_samples_leaf':[x for x in range(1,5,1)], 'n_estimators':[x for x in range(50,100,10)]}

3. 设置模型和评价指标,开始用不同的参数训练模型

clf = GradientBoostingClassifier()
grid = GridSearchCV(clf, params, cv=10, scoring="f1")
grid.fit(X, y)

scoring所有可能情况如下:

  • Classification
scoringfunctioncomment
accuracymetrics.accuracy_score
average_precisionmetrics.average_precision_score
f1metrics.f1_scorefor binary targets
f1_micrometrics.f1_scoremicro-averaged
f1_macrometrics.f1_scoremacro-averaged
f1_weightedmetrics.f1_scoreweighted average
f1_samplesmetrics.f1_scoreby multilabel sample
neg_log_lossmetrics.log_lossrequires predict_proba support
precision etc.metrics.precision_scoresuffixes apply as with “f1”
recall etc.metrics.recall_scoresuffixes apply as with “f1”
roc_aucmetrics.roc_auc_score
  • Clustering
scoringfunctioncomment
adjusted_rand_scoremetrics.adjusted_rand_score
  • Regression
scoringfunctioncomment
neg_mean_absolute_errormetrics.mean_absolute_error
neg_mean_squared_errormetrics.mean_squared_error
neg_median_absolute_errormetrics.median_absolute_error
r2metrics.r2_score

4. 查看最佳分数和最佳参数

grid.best_score_    #查看最佳分数(此处为f1_score)
grid.best_params_   #查看最佳参数

这里写图片描述

5. 获取最佳模型

grid.best_estimator_

这里写图片描述

6. 利用最佳模型来进行预测

best_model=grid.best_estimator_
predict_y=best_model.predict(Test_X)
metrics.f1_score(y, predict_y)

这篇关于Scikit中使用Grid_Search来获取模型的最佳参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092982

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三