Scikit中使用Grid_Search来获取模型的最佳参数

2024-08-21 11:08

本文主要是介绍Scikit中使用Grid_Search来获取模型的最佳参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. grid search是用来寻找模型的最佳参数

先导入一些依赖包

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import metrics
import numnpy as np
import pandas as pd

2. 设置要查找的参数

params={'learning_rate':np.linspace(0.05,0.25,5), 'max_depth':[x for x in range(1,8,1)], 'min_samples_leaf':[x for x in range(1,5,1)], 'n_estimators':[x for x in range(50,100,10)]}

3. 设置模型和评价指标,开始用不同的参数训练模型

clf = GradientBoostingClassifier()
grid = GridSearchCV(clf, params, cv=10, scoring="f1")
grid.fit(X, y)

scoring所有可能情况如下:

  • Classification
scoringfunctioncomment
accuracymetrics.accuracy_score
average_precisionmetrics.average_precision_score
f1metrics.f1_scorefor binary targets
f1_micrometrics.f1_scoremicro-averaged
f1_macrometrics.f1_scoremacro-averaged
f1_weightedmetrics.f1_scoreweighted average
f1_samplesmetrics.f1_scoreby multilabel sample
neg_log_lossmetrics.log_lossrequires predict_proba support
precision etc.metrics.precision_scoresuffixes apply as with “f1”
recall etc.metrics.recall_scoresuffixes apply as with “f1”
roc_aucmetrics.roc_auc_score
  • Clustering
scoringfunctioncomment
adjusted_rand_scoremetrics.adjusted_rand_score
  • Regression
scoringfunctioncomment
neg_mean_absolute_errormetrics.mean_absolute_error
neg_mean_squared_errormetrics.mean_squared_error
neg_median_absolute_errormetrics.median_absolute_error
r2metrics.r2_score

4. 查看最佳分数和最佳参数

grid.best_score_    #查看最佳分数(此处为f1_score)
grid.best_params_   #查看最佳参数

这里写图片描述

5. 获取最佳模型

grid.best_estimator_

这里写图片描述

6. 利用最佳模型来进行预测

best_model=grid.best_estimator_
predict_y=best_model.predict(Test_X)
metrics.f1_score(y, predict_y)

这篇关于Scikit中使用Grid_Search来获取模型的最佳参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092982

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2