分布式ID-一窥雪花算法的原生实现问题与解决方案(CosId)

本文主要是介绍分布式ID-一窥雪花算法的原生实现问题与解决方案(CosId),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分布式ID-雪花算法的问题与方案(CosId)

基本原理

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=%E5%88%86%E5%B8%83%E5%BC%8FID-%E9%9B%AA%E8%8A%B1%E7%AE%97%E6%B3%95%E7%9A%84%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%A1%88%EF%BC%88CosId%EF%BC%89_image.&pos_id=img-SZPkqRew-1724123351152)

Snowflake算法的原理相对直观,它有不同的部分组成,每个部分单独来看可能会导致重复,但是组合在一起做到全局唯一。

它负责生成一个64位(long型)的全局唯一ID,这个ID的构成包括:1位无用的符号位, 41位的时间戳, 10位的机器ID. 以及12位的序列号,除了固定的1位符号位之外,其余的三个部分都可以根据实际需求进行调整:

  1. 41位时间戳=(1L<<41)/(1000/3600/24/365):这部分能够表示的时间跨度大约69年。即可以使用的绝对时间为EPOCH+69年,一般我们需要自定义EPOCH为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
  2. 10位工作进程ID=(1L<<10)=1024:时间戳可以保证单台机器单调递增不重复,但是如果是不同机器的集群呢?那么就有可能产生相同的时间戳。这时候就可以把进程ID给拼接上来,机器ID可以唯一标识最多1024个相同的业务。
  3. 12位自增序列号=(1L<<12)*1000=4096000:如果在同一个进程中有多个线程同时生成,那么还是会产 生相同的ID,怎么办?那就再加上一个严格递增的序列位。这样就整体保证了全局的唯一性。

存在的问题

时间戳的坑:时钟回拨问题

服务器时钟回拨是由于在某些情况下,服务器的系统时钟会发生不可避免或人为的变化,在高并发场景下, 获得的高精度时间戳,有时候会往前跳,有时候又会往回拨。一旦时钟往回拨,就有可能产生重复的ID,这 就是时钟回拨问题。

解决的方法有很多,雪花算法对此并没有标准解决方案,不同框架有自己的解决方法,但是基本思路都是用上一次生成主键的时间戳,然后拿当前时间和上一次的时间进行比较,只是发现有问题后的解决方式会有不同:

  • shardingsphere解决方案:如果出现回拨(当前时间小于上一次获取的时间),当前线程就暂时sleep一小段时间,然后重新获取时间戳。
    @SneakyThrows(InterruptedException.class)private boolean waitTolerateTimeDifferenceIfNeed(final long currentMillis) {if (lastMillis.get() <= currentMillis) {return false;}long timeDifferenceMillis = lastMillis.get() - currentMillis;ShardingSpherePreconditions.checkState(timeDifferenceMillis < maxTolerateTimeDifferenceMillis,() -> new AlgorithmExecuteException(this, "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds.", lastMillis.get(), currentMillis));Thread.sleep(timeDifferenceMillis);return true;}
  • CosId框架发现时钟回拨直接抛出异常。
AbstractSnowflakeIdlong currentTimestamp = getCurrentTime();
if (currentTimestamp < lastTimestamp) {throw new ClockBackwardsException(lastTimestamp, currentTimestamp);
}
  • 使用ntpd这样的时间同步服务。
  • 美团的Leaf服务:时间戳不依赖本地的服务,放在第三方服务统一管理和获取,省却了时间同步的麻烦,但是因为会依赖网络通信,从而产生IO效率和可用性问题。

工作进程ID如何分配问题

SnowflakeId中根据业务设计的位分配方案确定了基本上就不再有变更了,也很少需要维护。但是工作进程ID总是需要配置的,而且集群中是不能重复的,还要考虑服务重启后分配ID保持稳定性,否则分区原则就会被破坏而导致ID唯一性原则破坏,当集群规模较大时工作进程ID的维护工作是非常繁琐,低效的。

COSID提供的方案如下:

MachineIdDistributorSnowflakeId 的机器号分配器,它负责分配机器号,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。

目前 CosId 提供了以下六种 MachineId 分配器。

  • ManualMachineIdDistributor: 手动配置machineId,一般只有在集群规模非常小的时候才有可能使用,不推荐。
  • StatefulSetMachineIdDistributor: 使用KubernetesStatefulSet提供的稳定的标识ID(HOSTNAME=service-01)作为机器号。
  • RedisMachineIdDistributor: 使用Redis作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • JdbcMachineIdDistributor: 使用关系型数据库作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • ZookeeperMachineIdDistributor: 使用ZooKeeper作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • MongoMachineIdDistributor: 使用MongoDB作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
    在这里插入图片描述

对于实例应用分成两类,一类是stable应用,就是稳定的应用,一类是不稳定的应用。以JdbcMachineIdDistributor分发器为例:

  • 不稳定的应用会回收机器号。每个新应用启动时在cosid_machine表就会有一条记录,并把分配的机器号写到machine_id字段,那么应用实例怎么跟这个机器号关联呢?这条记录还有一个instance_id字段(默认为ip:pid), 当这个应用设置成不稳定的应用时,instance_id字段在写入后暂时与分配的机器号形成了关联关系,然而到应用停止时,Spring的SmartLifecycle回调会回收这个关系(清空这条记录的instance_id字段),这条记录也不是不再用了,它会等待其它应用启动时重新回收利用(重新写入instance_id字段以建立关联关系)。
  • 稳定的应用相比不稳定的应用就是应用停止时不会有回收的动作,并且在本地的.cosid-machine-state目录会保存当前应用的机器号和时间戳,下次启动时还是会找到同一条记录。

下图展示了CosId分配工作进程id的过程:
在这里插入图片描述

序列号部分的不连续性

在雪花算法中,排在最后的12位自增序列号部分,默认的生成逻辑是当时间戳部分相等时,自增序列号部分才会+1,否则,将从0重新开始。我们想想这样的话会有什么问题,因为时间戳相同的情况很少,所以我们生成出来的id末尾大部分会导致取模的时候分布并不均匀,比如分库分表时,数据大部分就会落到一个地方,不适用于需要做取模运算的场景。

我们先复现一下问题,使用hutool的雪花算法工具类生成唯一id,然后做一个简单的取模运算:

    @Testpublic void hutoolSnowflakeMod() throws InterruptedException {for (int i = 0; i < 100; i++) {long id = IdUtil.getSnowflake(1).nextId();Thread.sleep(1);log.info("id: {}, after mod 4: {}", id, id % 4);}}

截取的结果可以看到,基本上就是0,几乎没有其它数字,取模的结果很不均匀。

[2024-08-19 15:46:45.486] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244152344576, after mod 4: 0
[2024-08-19 15:46:45.487] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244160733184, after mod 4: 0
[2024-08-19 15:46:45.490] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244164927488, after mod 4: 0
[2024-08-19 15:46:45.492] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244177510400, after mod 4: 0
[2024-08-19 15:46:45.493] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244185899008, after mod 4: 0
[2024-08-19 15:46:45.496] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244190093312, after mod 4: 0
[2024-08-19 15:46:45.498] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244202676224, after mod 4: 0
[2024-08-19 15:46:45.501] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244211064832, after mod 4: 0
[2024-08-19 15:46:45.503] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244223647744, after mod 4: 0
[2024-08-19 15:46:45.505] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244232036352, after mod 4: 0
[2024-08-19 15:46:45.507] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244240424960, after mod 4: 0

在CosId框架中,解决方案也很简单 – 轻易不要重置这个自增序列位即可,通过引入 sequenceResetThreshold 属性,巧妙地解决了取模分片不均匀的问题,这一设计在无需牺牲性能的同时,为用户提供了更加出色的使用体验。

sequenceResetThreshold 在不同的情况下可能会取不同的值,但是作用都是一样的,通过限制自增序列不要轻易重置来达到目的。

AbstractSnowflakeId//region Reset sequence based on sequence reset threshold,Optimize the problem of uneven sharding.if (currentTimestamp > lastTimestamp&& sequence >= sequenceResetThreshold) {sequence = 0L;
}

我们跑一遍CosId的取模情况:

    @Testpublic void cosIdSnowflakeMod() throws InterruptedException {for (int i = 0; i < 100; i++) {long id = snowflakeId.generate();Thread.sleep(1);log.info("id: {}, after mod 4: {}", id, id % 4);}}

可以看出已经不存在取模分配不均匀的问题

[2024-08-19 15:50:35.949] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209755045889, after mod 4: 1
[2024-08-19 15:50:35.951] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209763434498, after mod 4: 2
[2024-08-19 15:50:35.953] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209771823107, after mod 4: 3
[2024-08-19 15:50:35.955] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209780211716, after mod 4: 0
[2024-08-19 15:50:35.957] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209788600325, after mod 4: 1
[2024-08-19 15:50:35.959] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209796988934, after mod 4: 2
[2024-08-19 15:50:35.961] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209805377543, after mod 4: 3
[2024-08-19 15:50:35.963] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209813766152, after mod 4: 0

JavaScript数值溢出

JavaScriptNumber.MAX_SAFE_INTEGER只有53-bit,如果直接将63位的SnowflakeId返回给前端,那么会产生值溢出的情况(所以这里我们应该知道后端传给前端的long值溢出问题,迟早会出现,只不过SnowflakeId出现得更快而已)。 很显然溢出是不能被接受的,一般可以使用以下俩种处理方案:

  • 将生成的63-bitSnowflakeId转换为String类型。
    • 直接将long转换成String
    • (CosId方案)使用SnowflakeFriendlyIdSnowflakeId转换成比较友好的字符串表示:{timestamp}-{machineId}-{sequence} -> 20210623131730192-1-0
  • 自定义SnowflakeId位分配来缩短SnowflakeId的位数(53-bit)使 ID 提供给前端时不溢出
    • (CosId方案)使用SafeJavaScriptSnowflakeId(JavaScript 安全的 SnowflakeId)

这篇关于分布式ID-一窥雪花算法的原生实现问题与解决方案(CosId)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092696

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

kkFileView在线预览office的常见问题以及解决方案

《kkFileView在线预览office的常见问题以及解决方案》kkFileView在线预览Office常见问题包括base64编码配置、Office组件安装、乱码处理及水印添加,解决方案涉及版本适... 目录kkFileView在线预览office的常见问题1.base642.提示找不到OFFICE组件

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi